Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Samadhi Aparicio-Siegmund is active.

Publication


Featured researches published by Samadhi Aparicio-Siegmund.


Journal of Biological Chemistry | 2013

An Interleukin-6 Receptor-dependent Molecular Switch Mediates Signal Transduction of the IL-27 Cytokine Subunit p28 (IL-30) via a gp130 Protein Receptor Homodimer

Christoph Garbers; Björn Spudy; Samadhi Aparicio-Siegmund; Georg H. Waetzig; Jan Sommer; Christoph Hölscher; Stefan Rose-John; Joachim Grötzinger; Inken Lorenzen; Jürgen Scheller

Background: Anti-inflammatory signaling of IL-27, p28, and EBI3 is mediated by gp130 and Wsx-1. Results: Signaling of p28 via IL-6R is mediated by a gp130 homodimer. Conclusion: Signaling of p28 via IL-6R is likely not anti-inflammatory. Significance: We identify the signal receptor complex of p28/IL-6R. IL-27 consists of the cytokine subunit p28 and the non-signaling α-receptor EBI3. p28 was shown to additionally act via the non-signaling membrane-bound IL-6 α-receptor (IL-6R) as an agonistic cytokine but also as a gp130 β-receptor antagonist, leading to inhibition of IL-6 signaling. Here, we developed a strategy for bacterial expression, purification, and refolding of murine p28. We show that p28 did not interfere with IL-6- or IL-27-induced signaling, indicating that p28 has no antagonistic properties. Moreover, we demonstrate that murine p28 acts as an agonistic cytokine via the murine and human IL-6R, indicating that p28 exhibits no species specificity. p28 was able to induce p28-trans-signaling via the soluble IL-6R (sIL-6R), a characteristic property that was initially described for trans-signaling of IL-6 via the sIL-6R. Of notice, p28/sIL-6R trans-signaling was inhibited by the IL-6 trans-signaling antagonist, soluble gp130. At higher concentrations, p28 but not IL-6 was able to induce signaling even in the absence of IL-6R or EBI3. Although IL-27 signals via a heterodimer of the β-receptor chains gp130 and Wsx-1, p28/IL-6R specifically recruits two gp130 β-receptor chains for signal transduction. The binding of p28 to a gp130/Wsx-1 heterodimer or a gp130 homodimer is highly selective and controlled by a novel molecular switch induced by EBI3 or IL-6R, respectively.


Biochimica et Biophysica Acta | 2014

The interleukin-6 receptor Asp358Ala single nucleotide polymorphism rs2228145 confers increased proteolytic conversion rates by ADAM proteases

Christoph Garbers; Niloufar Monhasery; Samadhi Aparicio-Siegmund; Juliane Lokau; Paul Baran; Mari Ann Nowell; Simon Arnett Jones; Stefan Rose-John; Jürgen Scheller

The pleiotropic activities of Interleukin (IL-)6 are controlled by membrane-bound and soluble forms of the IL-6 receptor (IL-6R) in processes called classic and trans-signaling, respectively. The coding single nucleotide polymorphism (SNP) rs2228145 of the Interleukin 6 receptor (IL-6R Asp358Ala variant) is associated with a 2-fold increase in soluble IL-6R (sIL-6R) serum levels resulting in reduced IL-6-induced C-reactive protein (CRP) production and a reduced risk for coronary heart disease. It was suggested that the increased sIL-6R level leads to decreased IL-6 classic or increased IL-6 trans-signaling. Irrespective of the functional outcome of increased sIL-6R serum level, it is still under debate, whether the increased sIL-6R serum levels emerged from differential splicing or ectodomain shedding. Here we show that increased proteolytic ectodomain shedding mediated by the A Disintegrin and metalloproteinase domain (ADAM) proteases ADAM10 and ADAM17 caused increased sIL-6R serum level in vitro as well as in healthy volunteers homozygous for the IL-6R Asp358Ala allele. Differential splicing of the IL-6R appears to have only a minor effect on sIL-6R level. Increased ectodomain shedding resulted in reduced cell-surface expression of the IL-6R Asp358Ala variant compared to the common IL-6R variant. In conclusion, increased IL-6R ectodomain shedding is a mechanistic explanation for the increased serum IL-6R levels found in persons homozygous for the rs2228145 IL-6R Asp358Ala variant.


Cell Reports | 2016

Proteolytic Cleavage Governs Interleukin-11 Trans-signaling

Juliane Lokau; Rebecca Nitz; Maria Agthe; Niloufar Monhasery; Samadhi Aparicio-Siegmund; Neele Schumacher; Janina Wolf; Katja Möller-Hackbarth; Georg H. Waetzig; Joachim Grötzinger; Gerhard Müller-Newen; Stefan Rose-John; Jürgen Scheller; Christoph Garbers

Interleukin (IL)-11 has been shown to be a crucial factor for intestinal tumorigenesis, lung carcinomas, and asthma. IL-11 is thought to exclusively mediate its biological functions through cell-type-specific expression of the membrane-bound IL-11 receptor (IL-11R). Here, we show that the metalloprotease ADAM10, but not ADAM17, can release the IL-11R ectodomain. Chimeric proteins of the IL-11R and the IL-6 receptor (IL-6R) revealed that a small juxtamembrane portion is responsible for this substrate specificity of ADAM17. Furthermore, we show that the serine proteases neutrophil elastase and proteinase 3 can also cleave the IL-11R. The resulting soluble IL-11R (sIL-11R) is biologically active and binds IL-11 to activate cells. This IL-11 trans-signaling pathway can be inhibited specifically by the anti-inflammatory therapeutic compound sgp130Fc. In conclusion, proteolysis of the IL-11R represents a molecular switch that controls the IL-11 trans-signaling pathway and widens the number of cells that can be activated by IL-11.


Cell Cycle | 2013

Cellular senescence or EGFR signaling induces Interleukin 6 (IL-6) receptor expression controlled by mammalian target of rapamycin (mTOR)

Christoph Garbers; Fabian Kuck; Samadhi Aparicio-Siegmund; Kirstin Konzak; Mareike Kessenbrock; Annika Sommerfeld; Dieter Häussinger; Philipp A. Lang; Dirk Brenner; Tak W. Mak; Stefan Rose-John; Frank Essmann; Klaus Schulze-Osthoff; Roland P. Piekorz; Jürgen Scheller

Interleukin 6 (IL-6) signaling plays a role in inflammation, cancer, and senescence. Here, we identified soluble IL-6 receptor (sIL-6R) as a member of the senescence-associated secretory phenotype (SASP). Senescence-associated sIL-6R upregulation was mediated by mammalian target of rapamycin (mTOR). sIL-6R was mainly generated by a disintegrin and metalloprotease 10 (ADAM10)-dependent ectodomain shedding to enable IL-6 trans-signaling. In vivo, heterozygous PTEN-knockout mice exhibited higher mTOR activity and increased sIL-6R levels. Moreover, aberrant EGF receptor (EGFR) activation triggered IL-6 synthesis. In analogy to senescence, EGFR-induced activation of mTOR also induced IL-6R expression and sIL-6R generation. Hence, mTOR activation reprograms IL-6 non-responder cells into IL-6 responder cells. Our data suggest that mTOR serves as a central molecular switch to facilitate cellular IL-6 classic and trans-signaling via IL-6R upregulation with direct implications for cellular senescence and tumor development.


Cytokine & Growth Factor Reviews | 2015

The biology of interleukin-27 reveals unique pro- and anti-inflammatory functions in immunity

Samadhi Aparicio-Siegmund; Christoph Garbers

Interleukin (IL)-27 is a multifaceted heterodimeric cytokine with pronounced pro- and anti-inflammatory as well as immunoregulatory functions. It consists of the two subunits p28/IL-30 and Epstein Bar virus-induced protein 3 (EBI3). EBI3 functions as a soluble α-receptor, and IL-27 can therefore directly activate its target cells through a heterodimer of glycoprotein 130 (gp130) and WSX-1. Being a heterodimeric cytokine that signals through gp130, IL-27 is either grouped into the IL-6 or the IL-12 family of cytokines. Originally identified as an IL-12-like cytokine that induces proliferation of CD4+ T cells and production of IFN-γ more than ten years ago, subsequent research revealed a much broader role of IL-27 in inflammation, cancer development and regulation and differentiation of immune cells. In this review, we summarize the current biochemical and molecular knowledge about the signal transduction of IL-27. Based on this, we highlight functional overlaps and plasticity with other cytokines and cytokine receptors of the IL-6/IL-12 superfamily, and describe the important role of IL-27 with regard to the differentiation of T cells, infections and cancer development. We further discuss IL-27 as a therapeutic target and how specific blockade of this cytokine could be achieved.


Biochimie | 2015

Modular organization of Interleukin-6 and Interleukin-11 α-receptors.

Rebecca Nitz; Juliane Lokau; Samadhi Aparicio-Siegmund; Jürgen Scheller; Christoph Garbers

Interleukin (IL)-6 and IL-11 are the only canonical members of the IL-6 family of cytokines that induce signaling through a homodimer of the common β-receptor glycoprotein (gp)130. A pre-requisite for signal transduction is the initial binding of the cytokines to their unique α-receptors, IL-6R and IL-11R. The cell-type specific expression of the two receptors determines the target cells of IL-6 and IL-11, because gp130 is ubiquitously expressed. However, ciliary neurotrophic factor (CNTF) and IL-27p28/IL-30 have been described as additional ligands for the IL-6R, underlining a remarkable plasticity among the cytokines of the IL-6 family and their receptors. In this study, we show that neither IL-6 nor IL-11 can bind to and signal through the α-receptor of the respective other cytokine. We further create eight chimeric IL-6/IL-11 receptors, which are all biologically active. We find that the domains D1 to D3, which contain the cytokine binding module (CBM), determine which cytokine can activate the chimeric receptor, whereas the stalk region, the transmembrane region, or the intracellular region do not participate in the ligand selectivity of the receptor and are therefore interchangeable between IL-6R and IL-11R. These results suggest a modular organization of the IL-6R and IL-11R, and a similar signal transduction complex of the two cytokines.


PLOS ONE | 2014

Recombinant p35 from Bacteria Can Form Interleukin (IL-)12, but Not IL-35

Samadhi Aparicio-Siegmund; Jens M. Moll; Juliane Lokau; Melanie Grusdat; Jutta Schröder; Svenja Plöhn; Stefan Rose-John; Joachim Grötzinger; Philipp A. Lang; Jürgen Scheller; Christoph Garbers

The Interleukin (IL)-12 family contains several heterodimeric composite cytokines which share subunits among each other. IL-12 consists of the subunits p40 (shared with IL-23) and p35. p35 is shared with the composite cytokine IL-35 which comprises of the p35/EBI3 heterodimer (EBI3 shared with IL-27). IL-35 signals via homo- or heterodimers of IL-12Rβ2, gp130 and WSX-1, which are shared with IL-12 and IL-27 receptor complexes, respectively. p35 was efficiently secreted in complex with p40 as IL-12 but not with EBI3 as IL-35 in several transfected cell lines tested which complicates the analysis of IL-35 signal transduction. p35 and p40 but not p35 and EBI3 form an inter-chain disulfide bridge. Mutation of the responsible cysteine residue (p40C197A) reduced IL-12 formation and activity only slightly. Importantly, the p40C197A mutation prevented the formation of antagonistic p40 homodimers which enabled the in vitro reconstitution of biologically active IL-12 with p35 produced in bacteria (p35bac). Reconstitution of IL-35 with p35bac and EBI3 did, however, fail to induce signal transduction in Ba/F3 cells expressing IL-12Rβ2 and gp130. In summary, we describe the in vitro reconstitution of IL-12, but fail to produce recombinant IL-35 by this novel approach.


Journal of Biological Chemistry | 2014

The Amino Acid Exchange R28E in Ciliary Neurotrophic Factor (CNTF) Abrogates Interleukin-6 Receptor-dependent but Retains CNTF Receptor-dependent Signaling via Glycoprotein 130 (gp130)/Leukemia Inhibitory Factor Receptor (LIFR)

Eva-Maria Wagener; Matthias Aurich; Samadhi Aparicio-Siegmund; Doreen M. Floss; Christoph Garbers; Kati Breusing; Björn Rabe; Ralf Schwanbeck; Joachim Grötzinger; Stefan Rose-John; Jürgen Scheller

Background: CNTF signaling is mediated by CNTFR or IL-6R in complex with gp130 and LIFR. Results: The CNTFR variant CV-1 is CNTFR-selective. Conclusion: The single amino acid exchange R28E within CNTF abrogated IL-6R binding. Significance: CV-1 allows discrimination between CNTFR- and IL-6R-mediated effects in vivo. Ciliary neurotrophic factor (CNTF) is a neurotrophic factor with therapeutic potential for neurodegenerative diseases. Moreover, therapeutic application of CNTF reduced body weight in mice and humans. CNTF binds to high or low affinity receptor complexes consisting of CNTFR·gp130·LIFR or IL-6R·gp130·LIFR, respectively. Clinical studies of the CNTF derivative Axokine revealed intolerance at higher concentrations, which may rely on the low-affinity binding of CNTF to the IL-6R. Here, we aimed to generate a CNTFR-selective CNTF variant (CV). CV-1 contained the single amino acid exchange R28E. Arg28 is in close proximity to the CNTFR binding site. Using molecular modeling, we hypothesized that Arg28 might contribute to IL-6R/CNTFR plasticity of CNTF. CV-2 to CV-5 were generated by transferring parts of the CNTFR-binding site from cardiotrophin-like cytokine to CNTF. Cardiotrophin-like cytokine selectively signals via the CNTFR·gp130·LIFR complex, albeit with a much lower affinity compared with CNTF. As shown by immunoprecipitation, all CNTF variants retained the ability to bind to CNTFR. CV-1, CV-2, and CV-5, however, lost the ability to bind to IL-6R. Although all variants induced cytokine-dependent cellular proliferation and STAT3 phosphorylation via CNTFR·gp130·LIFR, only CV-3 induced STAT3 phosphorylation via IL-6R·gp130·LIFR. Quantification of CNTF-dependent proliferation of CNTFR·gp130·LIFR expressing cells indicated that only CV-1 was as biologically active as CNTF. Thus, the CNTFR-selective CV-1 will allow discriminating between CNTFR- and IL-6R-mediated effects in vivo.


Biochemical and Biophysical Research Communications | 2017

Trans-signaling of interleukin-6 (IL-6) is mediated by the soluble IL-6 receptor, but not by soluble CD5

Samadhi Aparicio-Siegmund; Malte Deseke; Annett Lickert; Christoph Garbers

IL-6 exerts its pleiotropic activities on its target cells via the IL-6 alpha-receptor (IL-6R), which is expressed on a limited number of cell types. IL-6 can further signal via soluble forms of its receptor (sIL-6R), a process that has been termed trans-signaling. Recently, CD5 was described as an alternative alpha-receptor for IL-6 on B cells leading to the phosphorylation of the transcription factor STAT3 via the signal-transducing β-receptor gp130 in a Jak2-dependent manner. In this study, we sought to investigate whether IL-6 was also able to signal via soluble CD5 (sCD5) analogous to IL-6 trans-signaling. We show that IL-6 indeed binds to sCD5, but that this does not lead to the activation of signal transduction or cell proliferation. Furthermore, sCD5 did also not interfere with IL-6 classic signaling, suggesting that the affinity between the two proteins was too weak to provoke a biological effect. Thus, trans-signaling of IL-6 can only occur via sIL-6R, but not sCD5.


Oncotarget | 2014

Inhibition of protein kinase II (CK2) prevents induced signal transducer and activator of transcription (STAT) 1/3 and constitutive STAT3 activation

Samadhi Aparicio-Siegmund; Jan Sommer; Niloufar Monhasery; Ralf Schwanbeck; Eric Keil; David Finkenstädt; Klaus Pfeffer; Stefan Rose-John; Jürgen Scheller; Christoph Garbers

Collaboration


Dive into the Samadhi Aparicio-Siegmund's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge