Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Samanta A. Mariani is active.

Publication


Featured researches published by Samanta A. Mariani.


Molecular Cancer | 2009

Elongation Factor 1 alpha interacts with phospho-Akt in breast cancer cells and regulates their proliferation, survival and motility

Luisa Pecorari; Oriano Marin; Chiara Silvestri; Olivia Candini; Elena Rossi; Clara Guerzoni; Sara Cattelani; Samanta A. Mariani; Francesca Corradini; Giovanna Ferrari-Amorotti; Laura Cortesi; Rita Bussolari; Giuseppe Raschellà; Massimo Federico; Bruno Calabretta

BackgroundAkt/PKB is a serine/threonine kinase that has attracted much attention because of its central role in regulating cell proliferation, survival, motility and angiogenesis. Activation of Akt in breast cancer portends aggressive tumour behaviour, resistance to hormone-, chemo-, and radiotherapy-induced apoptosis and it is correlated with decreased overall survival. Recent studies have identified novel tumor-specific substrates of Akt that may provide new diagnostic and prognostic markers and serve as therapeutic targets. This study was undertaken to identify pAkt-interacting proteins and to assess their biological roles in breast cancer cells.ResultsWe confirmed that one of the pAkt interacting proteins is the Elongation Factor EF1α. EF1α contains a putative Akt phosphorylation site, but is not phosphorylated by pAkt1 or pAkt2, suggesting that it may function as a modulator of pAkt activity. Indeed, downregulation of EF1α expression by siRNAs led to markedly decreased expression of pAkt1 and to less extent of pAkt2 and was associated with reduced proliferation, survival and invasion of HCC1937 cells. Proliferation and survival was further reduced by combining EF1α siRNAs with specific pAkt inhibitors whereas EF1α downregulation slightly attenuated the decreased invasion induced by Akt inhibitors.ConclusionWe show here that EF1α is a pAkt-interacting protein which regulates pAkt levels. Since EF1α is often overexpressed in breast cancer, the consequences of EF1α increased levels for proliferation, survival and invasion will likely depend on the relative concentration of Akt1 and Akt2.


Leukemia | 2012

Gfi-1 inhibits proliferation and colony formation of p210BCR/ABL-expressing cells via transcriptional repression of STAT 5 and Mcl-1.

Angela Rachele Soliera; Samanta A. Mariani; Alessandra Audia; Maria Rosa Lidonnici; Sankar Addya; Giovanna Ferrari-Amorotti; Sara Cattelani; Gloria Manzotti; Valentina Fragliasso; Luke F. Peterson; Giovanni Perini; Tessa L. Holyoake; Bruno Calabretta

Expression of the transcription repressor Gfi-1 is required for the maintenance of murine hematopoietic stem cells. In human cells, ectopic expression of Gfi-1 inhibits and RNA interference-mediated Gfi-1 downregulation enhances proliferation and colony formation of p210BCR/ABL expressing cells. To investigate the molecular mechanisms that may explain the effects of perturbing Gfi-1 expression in human cells, Gfi-1-regulated genes were identified by microarray analysis in K562 cells expressing the tamoxifen-regulated Gfi-1-ER protein. STAT 5B and Mcl-1, two genes important for the proliferation and survival of hematopoietic stem cells, were identified as direct and functionally relevant Gfi-1 targets in p210BCR/ABL-transformed cells because: (i) their expression and promoter activity was repressed by Gfi-1 and (ii) when constitutively expressed blocked the proliferation and colony formation inhibitory effects of Gfi-1. Consistent with these findings, genetic or pharmacological inhibition of STAT 5 and/or Mcl-1 markedly suppressed proliferation and colony formation of K562 and CD34+ chronic myelogenous leukemia (CML) cells. Together, these studies suggest that the Gfi-1STAT 5B/Mcl-1 regulatory pathway identified here can be modulated to suppress the proliferation and survival of p210BCR/ABL-transformed cells including CD34+ CML cells.


Journal of Translational Medicine | 2010

Asymmetric HIV-1 co-receptor use and replication in CD4+ T lymphocytes

Samanta A. Mariani; Elisa Vicenzi; Guido Poli

Susceptibility to infection by the human immunodeficiency virus type-1 (HIV-1), both in vitro and in vivo, requires the interaction between its envelope (Env) glycoprotein gp120 Env and the primary receptor (R), CD4, and Co-R, either CCR5 or CXCR4, members of the chemokine receptor family. CCR5-dependent (R5) viruses are responsible for both inter-individual transmission and for sustaining the viral pandemics, while CXCR4-using viruses, usually dualtropic R5X4, emerge in ca. 50% of individuals only in the late, immunologically suppressed stage of disease. The hypothesis that such a major biological asymmetry is explained exclusively by the availability of cells expressing CCR5 or CXCR4 is challenged by several evidences. In this regard, binding of the HIV-1 gp120 Env to the entry R complex, i.e. CD4 and a chemokine R, leads to two major events: virion-cell membrane fusion and a cascade of cell signaling. While the fusion/entry process has been well defined, the role of R/Co-R signaling in the HIV-1 life cycle has been less characterized. Indeed, depending on the cellular model studied, the capacity of HIV-1 to trigger a flow of events favoring either its own latency or replication remains a debated issue. In this article, we will review the major findings related to the role of HIV R/Co-R signaling in the steps following viral entry and leading to viral spreading in CD4+ T lymphocytes.


Molecular Cancer Therapeutics | 2015

Structure-Based Screen Identifies a Potent Small Molecule Inhibitor of Stat5a/b with Therapeutic Potential for Prostate Cancer and Chronic Myeloid Leukemia

Zhiyong Liao; Lei Gu; Jenny Vergalli; Samanta A. Mariani; Marco De Dominici; Ravi K. Lokareddy; Ayush Dagvadorj; Puranik Purushottamachar; Peter McCue; Edouard J. Trabulsi; Shilpa Gupta; Elyse Ellsworth; Shauna Blackmon; Adam Ertel; Paolo Fortina; Benjamin E. Leiby; Guanjun Xia; Hallgeir Rui; David T. Hoang; Leonard G. Gomella; Gino Cingolani; Vincent C. O. Njar; Nagarajan Pattabiraman; Bruno Calabretta; Marja T. Nevalainen

Bypassing tyrosine kinases responsible for Stat5a/b phosphorylation would be advantageous for therapy development for Stat5a/b-regulated cancers. Here, we sought to identify small molecule inhibitors of Stat5a/b for lead optimization and therapy development for prostate cancer and Bcr-Abl–driven leukemias. In silico screening of chemical structure databases combined with medicinal chemistry was used for identification of a panel of small molecule inhibitors to block SH2 domain–mediated docking of Stat5a/b to the receptor-kinase complex and subsequent phosphorylation and dimerization. We tested the efficacy of the lead compound IST5-002 in experimental models and patient samples of two known Stat5a/b-driven cancers, prostate cancer and chronic myeloid leukemia (CML). The lead compound inhibitor of Stat5-002 (IST5-002) prevented both Jak2 and Bcr-Abl–mediated phosphorylation and dimerization of Stat5a/b, and selectively inhibited transcriptional activity of Stat5a (IC50 = 1.5μmol/L) and Stat5b (IC50 = 3.5 μmol/L). IST5-002 suppressed nuclear translocation of Stat5a/b, binding to DNA and Stat5a/b target gene expression. IST5-002 induced extensive apoptosis of prostate cancer cells, impaired growth of prostate cancer xenograft tumors, and induced cell death in patient-derived prostate cancers when tested ex vivo in explant organ cultures. Importantly, IST5-002 induced robust apoptotic death not only of imatinib-sensitive but also of imatinib-resistant CML cell lines and primary CML cells from patients. IST5-002 provides a lead structure for further chemical modifications for clinical development for Stat5a/b-driven solid tumors and hematologic malignancies. Mol Cancer Ther; 14(8); 1777–93. ©2015 AACR.


Blood | 2009

Ligand-engaged urokinase-type plasminogen activator receptor and activation of the CD11b/CD18 integrin inhibit late events of HIV expression in monocytic cells

Massimo Alfano; Samanta A. Mariani; Chiara Elia; Ruggero Pardi; Francesco Blasi; Guido Poli

Urokinase-type plasminogen activator (uPA) signaling via its receptor uPAR inhibits late events in HIV-1 replication in acutely infected primary monocyte-derived macrophages (MDMs) and promonocytic U937 cells. Here we show that U937-derived, chronically infected U1 cells stimulated with phorbol 12-myristate 13-acetate (PMA) express integrins, uPA, and soluble uPAR at levels similar to those of MDMs. uPA inhibited HIV expression in U1 cells incubated with either PMA or tumor necrosis factor-alpha (TNF-alpha), but not with other HIV-inductive cytokines or lipopolysaccharide. Of interest, only PMA and TNF-alpha, but not other HIV-inductive stimuli, induced surface expression of the alpha(M) chain CD11b in U1 cells constitutively expressing CD18, the beta(2) chain of the Mac-1 integrin. Like uPA, fibrinogen, a Mac-1 (CD11b/CD18) ligand, and M25, a peptide homologous to a portion of the beta-propeller region of CD11b preventing its association with uPAR, inhibited HIV virion release in PMA-stimulated U1 cells. Both uPAR small-interference RNA (siRNA) and soluble anti-beta(1)/-beta(2) monoclonal antibodies abolished the anti-HIV effects of uPA, whereas CD11b siRNA reversed the anti-HIV effect of M25, but not that induced by uPA. Thus, either uPA/uPAR interaction, Mac-1 activation, or prevention of its association with uPAR triggers a signaling pathway leading to the inefficient release of HIV from monocytic cells.


Developmental Biology | 2016

Subregional localization and characterization of Ly6aGFP-expressing hematopoietic cells in the mouse embryonic head

Zhuan Li; Chris S. Vink; Samanta A. Mariani; Elaine Dzierzak

Hematopoietic cell generation in the midgestation mouse embryo occurs through the natural transdifferentiation of temporally and spatially restricted set of hemogenic endothelial cells. These cells take on hematopoietic fate in the aorta, vitelline and umbilical arteries and appear as hematopoietic cell clusters that emerge from the vascular wall. Genetic and live imaging data have supported this. Recently, the embryonic head has been shown to contain fully functional hematopoietic stem cells (HSC). By lineage tracing, cerebrovascular specific endothelial cells were shown to contribute to the postnatal mouse hematopoietic system. Since Ly6aGFP is a marker of all HSCs, some hematopoietic cluster cells and hemogenic endothelial cells in the midgestation mouse aorta, we examine here whether embryonic head HSCs and vascular endothelial cells are positive for this marker. Whereas some head vasculature, single hematopoietic cells and all HSCs are Ly6aGFP expressing, we do not find clusters of hematopoietic cells emerging from the cerebrovasculature that are characteristic of endothelial-to-hematopoietic transition.


Blood Cancer Journal | 2012

Expression of p89(c-Mybex9b), an alternatively spliced form of c-Myb, is required for proliferation and survival of p210BCR/ABL-expressing cells.

Gloria Manzotti; Samanta A. Mariani; Francesca Corradini; Rita Bussolari; Vincenzo Cesi; Jenny Vergalli; Giovanna Ferrari-Amorotti; Valentina Fragliasso; Angela Rachele Soliera; Sara Cattelani; Giuseppe Raschellà; Tessa L. Holyoake; Bruno Calabretta

The c-Myb gene encodes the p75c-Myb isoform and less-abundant proteins generated by alternatively spliced transcripts. Among these, the best known is pc-Mybex9b, which contains 121 additional amino acids between exon 9 and 10, in a domain involved in protein–protein interactions and negative regulation. In hematopoietic cells, expression of pc-Mybex9b accounts for 10–15% of total c-Myb; these levels may be biologically relevant because modest changes in c-Myb expression affects proliferation and survival of leukemic cells and lineage choice and frequency of normal hematopoietic progenitors. In this study, we assessed biochemical activities of pc-Mybex9b and the consequences of perturbing its expression in K562 and primary chronic myeloid leukemia (CML) progenitor cells. Compared with p75c-Myb, pc-Mybex9b is more stable and more effective in transactivating Myb-regulated promoters. Ectopic expression of pc-Mybex9b enhanced proliferation and colony formation and reduced imatinib (IM) sensitivity of K562 cells; conversely, specific downregulation of pc-Mybex9b reduced proliferation and colony formation, enhanced IM sensitivity of K562 cells and markedly suppressed colony formation of CML CD34+ cells, without affecting the levels of p75c-Myb. Together, these studies indicate that expression of the low-abundance pc-Mybex9b isoform has an important role for the overall biological effects of c-Myb in BCR/ABL-transformed cells.


Journal of Biological Chemistry | 2010

The biological effects of C/EBPalpha in K562 cells depend on the potency of the N-terminal regulatory region, not on specificity of the DNA binding domain.

Giovanna Ferrari-Amorotti; Samanta A. Mariani; Chiara Novi; Sara Cattelani; Luisa Pecorari; Francesca Corradini; Angela Rachele Soliera; Gloria Manzotti; Valentina Fragliasso; Ying Zhang; Robert Martinez; Eric Lam; Clara Guerzoni; Bruno Calabretta

The transcription factor C/EBPα is more potent than C/EBPβ in inducing granulocitic differentiation and inhibiting BCR/ABL-expressing cells. We took a “domain swapping” approach to assess biological effects, modulation of gene expression, and binding to C/EBPα-regulated promoters by wild-type and chimeric C/EBPα/C/EBPβ proteins. Wild-type and N-C/EBPα+ C/EBPβ-DBD induced transcription of the granulocyte-colony stimulating factor receptor (G-CSFR) gene, promoted differentiation, and suppressed proliferation of K562 cells vigorously; instead, wild-type C/EBPβ and N-C/EBPβ+C/EBPα-DBD had modest effects, although they bound the G-CSFR promoter like wild-type C/EBPα and N-C/EBPα+C/EBPβ-DBD. Chimeric proteins consisting of the TAD of VP16 and the DBD of C/EBPα or C/EBPβ inhibited proliferation and induced differentiation of K562 cells as effectively as wild-type C/EBPα. Gene expression profiles induced by C/EBPα resembled those modulated by N-C/EBPα+C/EBPβ-DBD, whereas C/EBPβ induced a pattern similar to that of N-C/EBPβ+C/EBPα-DBD. C/EBPα activation induced changes in the expression of more cell cycle- and apoptosis-related genes than the other proteins and enhanced Imatinib-induced apoptosis of K562 cells. Expression of FOXO3a, a novel C/EBPα-regulated gene, was required for apoptosis but not for differentiation induction or proliferation inhibition of K562 cells.


Cell Cycle | 2006

Effects of C/EBPα and C/EBPβ in BCR/ABL-expressing cells: Differences and similarities

Clara Guerzoni; Giovanna Ferrari-Amorotti; Michela Bardini; Samanta A. Mariani; Bruno Calabretta

C/EBPα and C/EBPβ, two transcription factors of the C/EBP family play important roles in the proliferation and differentiation of various cell types including myeloid progenitors . Expression of C/EBPα and C/EBPβ is repressed in myeloid blast crisis of Chronic Myelogenous Leukemia by mechanisms that involve translation repression which depends on the interaction of RNA-binding proteins with conserved binding sites in the 5’UTR of c/ebpα and c/ebpβ mRNA. Ectopic expression of C/EBPα and C/EBPβ in myeloid progenitors expressing the BCR/ABL oncogene inhibits proliferation, induces differentiation and suppresses leukemogenesis in mice, but C/EBPα is markedly more effective than C/EBPβ. The more potent effects of C/EBPα probably depends on protein-protein interaction with cell-cycle regulatory proteins, but the pattern of genes modulated by C/EBPα and C/EBPβ is not completely overlapping. This suggests that transcription-dependent and -independent effects are both involved and support the therapeutic potential of reactivating C/EBPα and C/EBPβ expression in leukemic cells.


Cell Reports | 2017

Structure of Nascent Chromatin Is Essential for Hematopoietic Lineage Specification

Svetlana Petruk; Samanta A. Mariani; Marco De Dominici; Patrizia Porazzi; Valentina Minieri; Jingli Cai; Lorraine Iacovitti; Neal Flomenberg; Bruno Calabretta; Alexander Mazo

The role of chromatin structure in lineage commitment of multipotent hematopoietic progenitors (HPCs) is presently unclear. We show here that CD34+ HPCs possess a post-replicative chromatin globally devoid of the repressive histone mark H3K27me3. This H3K27-unmodified chromatin is required for recruitment of lineage-determining transcription factors (TFs) C/EBPα, PU.1, and GATA-1 to DNA just after DNA replication upon cytokine-induced myeloid or erythroid commitment. Blocking DNA replication or increasing H3K27me3 levels prevents recruitment of these TFs to DNA and suppresses cytokine-induced erythroid or myeloid differentiation. However, H3K27me3 is rapidly associated with nascent DNA in more primitive human and murine HPCs. Treatment of these cells with instructive cytokines leads to a significant delay in accumulation of H3K27me3 in nascent chromatin due to activity of the H3K27me3 demethylase UTX. Thus, HPCs utilize special mechanisms of chromatin modification for recruitment of specific TFs to DNA during early stages of lineage specification.

Collaboration


Dive into the Samanta A. Mariani's collaboration.

Top Co-Authors

Avatar

Bruno Calabretta

Thomas Jefferson University

View shared research outputs
Top Co-Authors

Avatar

Giovanna Ferrari-Amorotti

University of Modena and Reggio Emilia

View shared research outputs
Top Co-Authors

Avatar

Guido Poli

Vita-Salute San Raffaele University

View shared research outputs
Top Co-Authors

Avatar

Angela Rachele Soliera

University of Modena and Reggio Emilia

View shared research outputs
Top Co-Authors

Avatar

Clara Guerzoni

University of Modena and Reggio Emilia

View shared research outputs
Top Co-Authors

Avatar

Sara Cattelani

University of Modena and Reggio Emilia

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Chris S. Vink

Erasmus University Rotterdam

View shared research outputs
Top Co-Authors

Avatar

Marco De Dominici

Thomas Jefferson University

View shared research outputs
Top Co-Authors

Avatar

Gloria Manzotti

University of Modena and Reggio Emilia

View shared research outputs
Researchain Logo
Decentralizing Knowledge