Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Samantha A. Price is active.

Publication


Featured researches published by Samantha A. Price.


Nature | 2007

The delayed rise of present-day mammals

Olaf R. P. Bininda-Emonds; Marcel Cardillo; Kate E. Jones; Ross D. E. MacPhee; Robin M. D. Beck; Richard Grenyer; Samantha A. Price; Rutger A. Vos; John L. Gittleman; Andy Purvis

Did the end-Cretaceous mass extinction event, by eliminating non-avian dinosaurs and most of the existing fauna, trigger the evolutionary radiation of present-day mammals? Here we construct, date and analyse a species-level phylogeny of nearly all extant Mammalia to bring a new perspective to this question. Our analyses of how extant lineages accumulated through time show that net per-lineage diversification rates barely changed across the Cretaceous/Tertiary boundary. Instead, these rates spiked significantly with the origins of the currently recognized placental superorders and orders approximately 93 million years ago, before falling and remaining low until accelerating again throughout the Eocene and Oligocene epochs. Our results show that the phylogenetic ‘fuses’ leading to the explosion of extant placental orders are not only very much longer than suspected previously, but also challenge the hypothesis that the end-Cretaceous mass extinction event had a major, direct influence on the diversification of today’s mammals.


Ecology | 2009

PanTHERIA: a species-level database of life history, ecology, and geography of extant and recently extinct mammals

Kate E. Jones; Jon Bielby; Marcel Cardillo; Susanne A. Fritz; Justin O'Dell; C. David L. Orme; Kamran Safi; Wes Sechrest; Elizabeth H. Boakes; Chris Carbone; Christina Connolly; Michael J. Cutts; Janine K. Foster; Richard Grenyer; Michael B. Habib; Christopher A. Plaster; Samantha A. Price; Elizabeth A. Rigby; Janna Rist; Amber G. F. Teacher; Olaf R. P. Bininda-Emonds; John L. Gittleman; Georgina M. Mace; Andy Purvis

Analyses of life-history, ecological, and geographic trait differences among species, their causes, correlates, and likely consequences are increasingly important for understanding and conserving biodiversity in the face of rapid global change. Assembling multispecies trait data from diverse literature sources into a single comprehensive data set requires detailed consideration of methods to reliably compile data for particular species, and to derive single estimates from multiple sources based on different techniques and definitions. Here we describe PanTHERIA, a species-level data set compiled for analysis of life history, ecology, and geography of all known extant and recently extinct mammals. PanTHERIA is derived from a database capable of holding multiple geo-referenced values for variables within a species containing 100 740 lines of biological data for extant and recently extinct mammalian species, collected over a period of three years by 20 individuals. PanTHERIA also includes spatial databases o...


Proceedings of the National Academy of Sciences of the United States of America | 2013

Phylogeny and tempo of diversification in the superradiation of spiny-rayed fishes

Thomas J. Near; Alex Dornburg; Ron I. Eytan; Benjamin P. Keck; W. Leo Smith; Kristen L. Kuhn; Jon A. Moore; Samantha A. Price; Frank T. Burbrink; Matt Friedman; Peter C. Wainwright

Spiny-rayed fishes, or acanthomorphs, comprise nearly one-third of all living vertebrates. Despite their dominant role in aquatic ecosystems, the evolutionary history and tempo of acanthomorph diversification is poorly understood. We investigate the pattern of lineage diversification in acanthomorphs by using a well-resolved time-calibrated phylogeny inferred from a nuclear gene supermatrix that includes 520 acanthomorph species and 37 fossil age constraints. This phylogeny provides resolution for what has been classically referred to as the “bush at the top” of the teleost tree, and indicates acanthomorphs originated in the Early Cretaceous. Paleontological evidence suggests acanthomorphs exhibit a pulse of morphological diversification following the end Cretaceous mass extinction; however, the role of this event on the accumulation of living acanthomorph diversity remains unclear. Lineage diversification rates through time exhibit no shifts associated with the end Cretaceous mass extinction, but there is a global decrease in lineage diversification rates 50 Ma that occurs during a period when morphological disparity among fossil acanthomorphs increases sharply. Analysis of clade-specific shifts in diversification rates reveal that the hyperdiversity of living acanthomorphs is highlighted by several rapidly radiating lineages including tunas, gobies, blennies, snailfishes, and Afro-American cichlids. These lineages with high diversification rates are not associated with a single habitat type, such as coral reefs, indicating there is no single explanation for the success of acanthomorphs, as exceptional bouts of diversification have occurred across a wide array of marine and freshwater habitats.


Biological Reviews | 2005

A complete phylogeny of the whales, dolphins and even‐toed hoofed mammals (Cetartiodactyla)

Samantha A. Price; Olaf R. P. Bininda-Emonds; John L. Gittleman

Despite the biological and economic importance of the Cetartiodactyla, the phylogeny of this clade remains controversial. Using the supertree approach of matrix representation with parsimony, we present the first phylogeny to include all 290 extant species of the Cetacea (whales and dolphins) and Artiodactyla (even‐toed hoofed mammals). At the family‐level, the supertree is fully resolved. For example, the relationships among the Ruminantia appear as (((Cervidae, Moschidae) Bovidae) (Giraffidae, Antilocapridae) Tragulidae). However, due to either lack of phylogenetic study or contradictory information, polytomies occur within the clades Sus, Muntiacus, Cervus, Delphinidae, Ziphiidae and Bovidae. Complete species‐level phylogenies are necessary for both illustrating and analysing biological, geographical and ecological patterns in an evolutionary framework. The present species‐level tree of the Cetartiodactyla provides the first opportunity to examine comparative hypotheses across entirely aquatic and terrestrial species within a single mammalian order.


Archive | 2004

Garbage in, Garbage out

Olaf R. P. Bininda-Emonds; Kate E. Jones; Samantha A. Price; Marcel Cardillo; Richard Grenyer; Andy Purvis

As in conventional phylogenetic analyses, issues surrounding the source data are paramount in the supertree construction, but have received insufficient attention. In supertree construction, however, the source data represent phylogenetic trees rather than primary character data. This presents several supertree-specific problems. In this paper, we examine several key data issues for supertree construction, including data set non-independence, taxonomy of terminal taxa, and the question of what constitutes a valid source tree. Throughout, we present our suggested protocol for source tree collection and manipulation based on our experiences in building a supertree of mammals. Other protocols and decisions are naturally possible. What is important is that all collection protocols are presented explicitly and address minimally the issues that we have identified.


Proceedings of the National Academy of Sciences of the United States of America | 2012

Tempo of trophic evolution and its impact on mammalian diversification

Samantha A. Price; Samantha S. B. Hopkins; Kathleen K. Smith; V. Louise Roth

Mammals are characterized by the complex adaptations of their dentition, which are an indication that diet has played a critical role in their evolutionary history. Although much attention has focused on diet and the adaptations of specific taxa, the role of diet in large-scale diversification patterns remains unresolved. Contradictory hypotheses have been proposed, making prediction of the expected relationship difficult. We show that net diversification rate (the cumulative effect of speciation and extinction), differs significantly among living mammals, depending upon trophic strategy. Herbivores diversify fastest, carnivores are intermediate, and omnivores are slowest. The tempo of transitions between the trophic strategies is also highly biased: the fastest rates occur into omnivory from herbivory and carnivory and the lowest transition rates are between herbivory and carnivory. Extant herbivore and carnivore diversity arose primarily through diversification within lineages, whereas omnivore diversity evolved by transitions into the strategy. The ability to specialize and subdivide the trophic niche allowed herbivores and carnivores to evolve greater diversity than omnivores.


Ecology Letters | 2011

Coral reefs promote the evolution of morphological diversity and ecological novelty in labrid fishes.

Samantha A. Price; Roi Holzman; Thomas J. Near; Peter C. Wainwright

Although coral reefs are renowned biodiversity hotspots it is not known whether they also promote the evolution of exceptional ecomorphological diversity. We investigated this question by analysing a large functional morphological dataset of trophic characters within Labridae, a highly diverse group of fishes. Using an analysis that accounts for species relationships, the time available for diversification and model uncertainty we show that coral reef species have evolved functional morphological diversity twice as fast as non-reef species. In addition, coral reef species occupy 68.6% more trophic morphospace than non-reef species. Our results suggest that coral reef habitats promote the evolution of both trophic novelty and morphological diversity within fishes. Thus, the preservation of coral reefs is necessary, not only to safeguard current biological diversity but also to conserve the underlying mechanisms that can produce functional diversity in future.


Evolution | 2010

Functional innovations and morphological diversification in parrotfish.

Samantha A. Price; Peter C. Wainwright; David R. Bellwood; Erem Kazancıoğlu; David C. Collar; Thomas J. Near

The association between diversification and evolutionary innovations has been well documented and tested in studies of taxonomic richness but the impact that such innovations have on the diversity of form and function is less well understood. Using phylogenetically rigorous techniques, we investigated the association between morphological diversity and two design breakthroughs within the jaws of parrotfish. Similar intramandibular joints and other modifications of the pharyngeal jaws have evolved repeatedly in teleost fish and are frequently hypothesized to promote diversity. We quantified morphological diversity within six functionally important oral jaw traits using the Brownian motion rate of evolution to correct for phylogenetic and time‐related biases and compared these rates across clades that did and did not possess the intramandibular joint and the parrotfish pharyngeal jaw. No change in morphological diversity was associated with the pharyngeal jaw modification alone but rates of oral jaw diversification were up to 8× faster in parrotfish species that possessed both innovations. Interestingly, this morphological diversity may not have led to differential resource uses as available data suggest that members of this clade show remarkable homogeneity of diet.


Proceedings of the Royal Society of London B: Biological Sciences | 2007

Hunting to extinction: biology and regional economy influence extinction risk and the impact of hunting in artiodactyls

Samantha A. Price; John L. Gittleman

Half of all artiodactyls (even-toed hoofed mammals) are threatened with extinction, around double the mammalian average. Here, using a complete species-level phylogeny, we construct a multivariate model to assess for the first time which intrinsic (biological) and extrinsic (anthropogenic and environmental) factors influence variation in extinction risk in artiodactyls. Globally artiodactyls at greatest risk live in economically less developed areas, have older weaning ages and smaller geographical ranges. Our findings suggest that identifying predictors of threat is complicated by interactions between both biological and anthropogenic factors, resulting in differential responses to threatening processes. Artiodactyl species that experience unregulated hunting live in significantly less economically developed areas than those that are not hunted; however, hunted species are more susceptible to extinction if they have slower reproductive rates (older weaning ages). In contrast, risk in non-hunted artiodactyls is unrelated to reproductive rate and more closely associated with the economic development of the region in which they live.


Evolution | 2009

Linking big: the continuing promise of evolutionary synthesis.

Brian L. Sidlauskas; Ganeshkumar Ganapathy; Einat Hazkani-Covo; Kristin P. Jenkins; Hilmar Lapp; Lauren W. McCall; Samantha A. Price; Ryan Scherle; Paula Ann Spaeth; David M. Kidd

Synthetic science promises an unparalleled ability to find new meaning in old data, extant results, or previously unconnected methods and concepts, but pursuing synthesis can be a difficult and risky endeavor. Our experience as biologists, informaticians, and educators at the National Evolutionary Synthesis Center has affirmed that synthesis can yield major insights, but also revealed that technological hurdles, prevailing academic culture, and general confusion about the nature of synthesis can hamper its progress. By presenting our view of what synthesis is, why it will continue to drive progress in evolutionary biology, and how to remove barriers to its progress, we provide a map to a future in which all scientists can engage productively in synthetic research.

Collaboration


Dive into the Samantha A. Price's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Andy Purvis

Imperial College London

View shared research outputs
Top Co-Authors

Avatar

Kate E. Jones

University College London

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Marcel Cardillo

Australian National University

View shared research outputs
Top Co-Authors

Avatar

Thomas J. Near

American Museum of Natural History

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

David M. Kidd

National Evolutionary Synthesis Center

View shared research outputs
Researchain Logo
Decentralizing Knowledge