Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Samantha E. Simmons is active.

Publication


Featured researches published by Samantha E. Simmons.


PLOS ONE | 2010

Accuracy of ARGOS locations of Pinnipeds at-sea estimated using Fastloc GPS.

Daniel P. Costa; Patrick W. Robinson; John P. Y. Arnould; Autumn-Lynn Harrison; Samantha E. Simmons; Jason L. Hassrick; Andrew J. Hoskins; Stephen P. Kirkman; Herman Oosthuizen; Stella Villegas-Amtmann; Daniel E. Crocker

Background ARGOS satellite telemetry is one of the most widely used methods to track the movements of free-ranging marine and terrestrial animals and is fundamental to studies of foraging ecology, migratory behavior and habitat-use. ARGOS location estimates do not include complete error estimations, and for many marine organisms, the most commonly acquired locations (Location Class 0, A, B, or Z) are provided with no declared error estimate. Methodology/Principal Findings We compared the accuracy of ARGOS locations to those obtained using Fastloc GPS from the same electronic tags on five species of pinnipeds: 9 California sea lions (Zalophus californianus), 4 Galapagos sea lions (Zalophus wollebaeki), 6 Cape fur seals (Arctocephalus pusillus pusillus), 3 Australian fur seals (A. p. doriferus) and 5 northern elephant seals (Mirounga angustirostris). These species encompass a range of marine habitats (highly pelagic vs coastal), diving behaviors (mean dive durations 2–21 min) and range of latitudes (equator to temperate). A total of 7,318 ARGOS positions and 27,046 GPS positions were collected. Of these, 1,105 ARGOS positions were obtained within five minutes of a GPS position and were used for comparison. The 68th percentile ARGOS location errors as measured in this study were LC-3 0.49 km, LC-2 1.01 km, LC-1 1.20 km, LC-0 4.18 km, LC-A 6.19 km, LC-B 10.28 km. Conclusions/Significance The ARGOS errors measured here are greater than those provided by ARGOS, but within the range of other studies. The error was non-normally distributed with each LC highly right-skewed. Locations of species that make short duration dives and spend extended periods on the surface (sea lions and fur seals) had less error than species like elephant seals that spend more time underwater and have shorter surface intervals. Supplemental data (S1) are provided allowing the creation of density distributions that can be used in a variety of filtering algorithms to improve the quality of ARGOS tracking data.


PLOS ONE | 2012

Foraging Behavior and Success of a Mesopelagic Predator in the Northeast Pacific Ocean: Insights from a Data-Rich Species, the Northern Elephant Seal

Patrick W. Robinson; Daniel P. Costa; Daniel E. Crocker; Juan Pablo Gallo-Reynoso; Cory D. Champagne; Melinda A. Fowler; Chandra Goetsch; Kimberly T. Goetz; Jason L. Hassrick; Luis A. Hückstädt; Carey E. Kuhn; Jennifer L. Maresh; Sara M. Maxwell; Birgitte I. McDonald; Sarah H. Peterson; Samantha E. Simmons; Nicole M. Teutschel; Stella Villegas-Amtmann; Ken Yoda

The mesopelagic zone of the northeast Pacific Ocean is an important foraging habitat for many predators, yet few studies have addressed the factors driving basin-scale predator distributions or inter-annual variability in foraging and breeding success. Understanding these processes is critical to reveal how conditions at sea cascade to population-level effects. To begin addressing these challenging questions, we collected diving, tracking, foraging success, and natality data for 297 adult female northern elephant seal migrations from 2004 to 2010. During the longer post-molting migration, individual energy gain rates were significant predictors of pregnancy. At sea, seals focused their foraging effort along a narrow band corresponding to the boundary between the sub-arctic and sub-tropical gyres. In contrast to shallow-diving predators, elephant seals target the gyre-gyre boundary throughout the year rather than follow the southward winter migration of surface features, such as the Transition Zone Chlorophyll Front. We also assessed the impact of added transit costs by studying seals at a colony near the southern extent of the species’ range, 1,150 km to the south. A much larger proportion of seals foraged locally, implying plasticity in foraging strategies and possibly prey type. While these findings are derived from a single species, the results may provide insight to the foraging patterns of many other meso-pelagic predators in the northeast Pacific Ocean.


Proceedings of the Royal Society of London B: Biological Sciences | 2012

Deadly diving? Physiological and behavioural management of decompression stress in diving mammals

Sascha K. Hooker; Andreas Fahlman; Michael J. Moore; N. Aguilar de Soto; Y. Bernaldo de Quirós; Alf O. Brubakk; Daniel P. Costa; Alexander M. Costidis; Sophie Dennison; K. J. Falke; A. Fernández; Massimo Ferrigno; J. R. Fitz-Clarke; Michael M. Garner; Dorian S. Houser; Paul D. Jepson; Darlene R. Ketten; Peter H Kvadsheim; Peter T. Madsen; N. W. Pollock; David S. Rotstein; Teri Rowles; Samantha E. Simmons; W. Van Bonn; P. K. Weathersby; Michael J. Weise; Terrie M. Williams; Peter L. Tyack

Decompression sickness (DCS; ‘the bends’) is a disease associated with gas uptake at pressure. The basic pathology and cause are relatively well known to human divers. Breath-hold diving marine mammals were thought to be relatively immune to DCS owing to multiple anatomical, physiological and behavioural adaptations that reduce nitrogen gas (N2) loading during dives. However, recent observations have shown that gas bubbles may form and tissue injury may occur in marine mammals under certain circumstances. Gas kinetic models based on measured time-depth profiles further suggest the potential occurrence of high blood and tissue N2 tensions. We review evidence for gas-bubble incidence in marine mammal tissues and discuss the theory behind gas loading and bubble formation. We suggest that diving mammals vary their physiological responses according to multiple stressors, and that the perspective on marine mammal diving physiology should change from simply minimizing N2 loading to management of the N2 load. This suggests several avenues for further study, ranging from the effects of gas bubbles at molecular, cellular and organ function levels, to comparative studies relating the presence/absence of gas bubbles to diving behaviour. Technological advances in imaging and remote instrumentation are likely to advance this field in coming years.


Journal of Animal Ecology | 2010

Measurements of foraging success in a highly pelagic marine predator, the northern elephant seal

Patrick W. Robinson; Samantha E. Simmons; Daniel E. Crocker; Daniel P. Costa

1. Identification of foraging behaviour and the ability to assess foraging success is critical to understanding individual and between-species variation in habitat use and foraging ecology. For pelagic predators, behaviour-dependent foraging metrics are commonly used to identify important foraging areas, yet few of these metrics have been validated. 2. Using the northern elephant seal as a model species, we validated the use of a behaviour-independent measure of foraging success (changes in drift rate) at the scale of the entire foraging migration, and then used this to assess a variety of common foraging metrics that are based on movement patterns and dive behaviour. Transit rate consistently provided the best estimate of daily foraging success, although the addition of other metrics provides insight into different foraging behaviours or strategies. 3. While positive changes in buoyancy occurred throughout most of the migrations, implying successful feeding across much of the north Pacific, the areas of most rapid changes in buoyancy occurred along a latitudinal band (40-50° N) corresponding to a dynamic hydrographic region including Subarctic Gyre and Transition Zone waters. 4. These results support the use of transit rate as an index of foraging success: a metric that is easily derived from tracking measurements on a wide range of marine species.


The Journal of Experimental Biology | 2010

Condition and mass impact oxygen stores and dive duration in adult female northern elephant seals

Jason L. Hassrick; Daniel E. Crocker; Nicole M. Teutschel; Birgitte I. McDonald; Patrick W. Robinson; Samantha E. Simmons; Daniel P. Costa

SUMMARY The range of foraging behaviors available to deep-diving, air-breathing marine vertebrates is constrained by their physiological capacity to breath-hold dive. We measured body oxygen stores (blood volume and muscle myoglobin) and diving behavior in adult female northern elephant seals, Mirounga angustirostris, to investigate age-related effects on diving performance. Blood volume averaged 74.4±17.0 liters in female elephant seals or 20.2±2.0% of body mass. Plasma volume averaged 32.2±7.8 liters or 8.7±0.7% of body mass. Absolute plasma volume and blood volume increased independently with mass and age. Hematocrit decreased weakly with mass but did not vary with age. Muscle myoglobin concentration, while higher than previously reported (7.4±0.7 g%), did not vary with mass or age. Pregnancy status did not influence blood volume. Mean dive duration, a proxy for physiological demand, increased as a function of how long seals had been at sea, followed by mass and hematocrit. Strong effects of female body mass (range, 218-600 kg) on dive duration, which were independent of oxygen stores, suggest that larger females had lower diving metabolic rates. A tendency for dives to exceed calculated aerobic limits occurred more frequently later in the at-sea migration. Our data suggest that individual physiological state variables and condition interact to determine breath-hold ability and that both should be considered in life-history studies of foraging behavior.


PLOS ONE | 2013

Using Energetic Models to Investigate the Survival and Reproduction of Beaked Whales (family Ziphiidae)

Leslie New; David Moretti; Sascha K. Hooker; Daniel P. Costa; Samantha E. Simmons

Mass stranding of several species of beaked whales (family Ziphiidae) associated with exposure to anthropogenic sounds has raised concern for the conservation of these species. However, little is known about the species’ life histories, prey or habitat requirements. Without this knowledge, it becomes difficult to assess the effects of anthropogenic sound, since there is no way to determine whether the disturbance is impacting the species’ physical or environmental requirements. Here we take a bioenergetics approach to address this gap in our knowledge, as the elusive, deep-diving nature of beaked whales has made it hard to study these effects directly. We develop a model for Ziphiidae linking feeding energetics to the species’ requirements for survival and reproduction, since these life history traits would be the most likely to be impacted by non-lethal disturbances. Our models suggest that beaked whale reproduction requires energy dense prey, and that poor resource availability would lead to an extension of the inter-calving interval. Further, given current information, it seems that some beaked whale species require relatively high quality habitat in order to meet their requirements for survival and reproduction. As a result, even a small non-lethal disturbance that results in displacement of whales from preferred habitats could potentially impact a population if a significant proportion of that population was affected. We explored the impact of varying ecological parameters and model assumptions on survival and reproduction, and find that calf and fetus survival appear more readily affected than the survival of adult females.


Journal of Animal Ecology | 2013

Estimating resource acquisition and at-sea body condition of a marine predator

Robert S. Schick; Leslie New; Len Thomas; Daniel P. Costa; Mark A. Hindell; Clive R. McMahon; Patrick W. Robinson; Samantha E. Simmons; Michele Thums; John Harwood; James S. Clark

Body condition plays a fundamental role in many ecological and evolutionary processes at a variety of scales and across a broad range of animal taxa. An understanding of how body condition changes at fine spatial and temporal scales as a result of interaction with the environment provides necessary information about how animals acquire resources. However, comparatively little is known about intra- and interindividual variation of condition in marine systems. Where condition has been studied, changes typically are recorded at relatively coarse time-scales. By quantifying how fine-scale interaction with the environment influences condition, we can broaden our understanding of how animals acquire resources and allocate them to body stores. Here we used a hierarchical Bayesian state-space model to estimate the body condition as measured by the size of an animals lipid store in two closely related species of marine predator that occupy different hemispheres: northern elephant seals (Mirounga angustirostris) and southern elephant seals (Mirounga leonina). The observation model linked drift dives to lipid stores. The process model quantified daily changes in lipid stores as a function of the physiological condition of the seal (lipid:lean tissue ratio, departure lipid and departure mass), its foraging location, two measures of behaviour and environmental covariates. We found that physiological condition significantly impacted lipid gain at two time-scales – daily and at departure from the colony – that foraging location was significantly associated with lipid gain in both species of elephant seals and that long-term behavioural phase was associated with positive lipid gain in northern and southern elephant seals. In northern elephant seals, the occurrence of short-term behavioural states assumed to represent foraging were correlated with lipid gain. Lipid gain was a function of covariates in both species. Southern elephant seals performed fewer drift dives than northern elephant seals and gained lipids at a lower rate. We have demonstrated a new way to obtain time series of body condition estimates for a marine predator at fine spatial and temporal scales. This modelling approach accounts for uncertainty at many levels and has the potential to integrate physiological and movement ecology of top predators. The observation model we used was specific to elephant seals, but the process model can readily be applied to other species, providing an opportunity to understand how animals respond to their environment at a fine spatial scale.


PLOS ONE | 2011

Latitudinal range influences the seasonal variation in the foraging behavior of marine top predators.

Stella Villegas-Amtmann; Samantha E. Simmons; Carey E. Kuhn; Luis A. Hückstädt; Daniel P. Costa

Non-migratory resident species should be capable of modifying their foraging behavior to accommodate changes in prey abundance and availability associated with a changing environment. Populations that are better adapted to change will have higher foraging success and greater potential for survival in the face of climate change. We studied two species of resident central place foragers from temperate and equatorial regions with differing population trends and prey availability associated to season, the California sea lion (Zalophus californianus) (CSL) whose population is increasing and the endangered Galapagos sea lion (Zalophus wollebaeki) (GSL) whose population is declining. To determine their response to environmental change, we studied and compared their diving behavior using time-depth recorders and satellite location tags and their diet by measuring C and N isotope ratios during a warm and a cold season. Based on latitudinal differences in oceanographic productivity, we hypothesized that the seasonal variation in foraging behavior would differ for these two species. CSL exhibited greater seasonal variability in their foraging behavior as seen in changes to their diving behavior, foraging areas and diet between seasons. Conversely, GSL did not change their diving behavior between seasons, presenting three foraging strategies (shallow, deep and bottom divers) during both. GSL exhibited greater dive and foraging effort than CSL. We suggest that during the warm and less productive season a greater range of foraging behaviors in CSL was associated with greater competition for prey, which relaxed during the cold season when resource availability was greater. GSL foraging specialization suggests that resources are limited throughout the year due to lower primary production and lower seasonal variation in productivity compared to CSL. These latitudinal differences influence their foraging success, pup survival and population growth reflected in contrasting population trends in which CSL are more successful and potentially more resilient to climate change.


The Journal of Experimental Biology | 2014

Free-swimming northern elephant seals have low field metabolic rates that are sensitive to an increased cost of transport.

Jennifer L. Maresh; Samantha E. Simmons; Daniel E. Crocker; Birgitte I. McDonald; Terrie M. Williams; Daniel P. Costa

Widely ranging marine predators often adopt stereotyped, energy-saving behaviours to minimize the energetic cost of transport while maximizing energy gain. Environmental and anthropogenic disturbances can disrupt energy balance by prompting avoidance behaviours that increase transport costs, thereby decreasing foraging efficiency. We examined the ability of 12 free-ranging, juvenile northern elephant seals (Mirounga angustirostris) to mitigate the effects of experimentally increased transport costs by modifying their behaviour and/or energy use in a compensatory manner. Under normal locomotion, elephant seals had low energy requirements (106.5±28.2 kJ kg−1 day−1), approaching or even falling below predictions of basal requirements. Seals responded to a small increase in locomotion costs by spending more time resting between dives (149±44 s) compared with matched control treatments (102±11 s; P<0.01). Despite incurred costs, most other dive and transit behaviours were conserved across treatments, including fixed, rhythmic swimming gaits. Because of this, and because each flipper stroke had a predictable effect on total costs (P<0.001), total energy expenditure was strongly correlated with time spent at sea under both treatments (P<0.0001). These results suggest that transiting elephant seals have a limited capacity to modify their locomotory behaviour without increasing their transport costs. Based on this, we conclude that elephant seals and other ocean predators occupying similar niches may be particularly sensitive to increased transport costs incurred when avoiding unanticipated disturbances.


Environmental Biology of Fishes | 2013

Mobile receivers: releasing the mooring to ‘see’ where fish go

Sean A. Hayes; Nicole M. Teutschel; Cyril J. Michel; Cory D. Champagne; Patrick W. Robinson; Melinda A. Fowler; Tina Yack; David K. Mellinger; Samantha E. Simmons; Daniel P. Costa; R. Bruce MacFarlane

Much has been learned from the large scale deployment of acoustic tags on aquatic species and associated networks of riverine and marine receivers. While effective in the linear environment of river systems, marine systems limit the ability to provide spatial information on fish movements and distributions due to a combination of costs, logistics, and lack of off-shore technology. At the same time, each year millions of dollars worth of tags are being released into the aquatic environment with extended battery/transmission life, yet detections are limited to coastal arrays. Here we explore new methods of tracking acoustically tagged species in the marine environment. A new miniaturized acoustic receiver, the Vemco Mobile Transceiver (VMT) can be carried by large marine organisms. In combination with satellite and archival tag technology, VMTs were deployed on northern elephant seals to monitor acoustic tags encountered during their migrations across the Northeast Pacific. Early results include acoustic detections of tagged great white sharks, salmon sharks, Chinook salmon, steelhead, lingcod, green sturgeon and other elephant seals. We also propose several alternative directions for future effort: 1) analyzing the growing number of passive acoustic survey recordings made from hydrophone arrays for acoustic tag detections, 2) working with acoustic technology providers to develop hull-mounted receiver systems for the thousands of ocean going vessels around the world and 3) integrating acoustic receiver technology into the thousands of moored and drifting oceanographic buoy arrays.

Collaboration


Dive into the Samantha E. Simmons's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Carey E. Kuhn

National Oceanic and Atmospheric Administration

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Birgitte I. McDonald

Moss Landing Marine Laboratories

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge