Samantha J. King
Ohio State University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Samantha J. King.
Molecular Microbiology | 2006
Samantha J. King; Karen R. Hippe; Jeffrey N. Weiser
Streptococcus pneumoniae produces three surface‐associated exoglycosidases; a neuraminidase, NanA, a β‐galactosidase, BgaA, and a β‐N‐acetylglucosaminidase, StrH. the proposed functions of NanA, which removes terminal sialic acid, include revealing receptors for adherence, affecting the function of glycosylated host clearance molecules, modifying the surface of other bacteria coinhabiting the same niche, and providing a nutrient source. However, it is unclear whether following desialylation S. pneumoniae can further deglycosylate human targets through the activity of BgaA or StrH. We demonstrate that NanA, BgaA and StrH act sequentially to remove sialic acid, galactose and N‐acetylglucosamine and expose mannose on human glycoproteins that bind to the pneumococcus and protect the airway. In addition, both BgaA and NanA were shown to contribute to the adherence of unencapsulated pneumococci, to human epithelial cells. Despite these findings, triple exoglycosidase mutants colonized mice as well as their parental strains, suggesting that any effect of these genes on colonization and disease may be host species‐specific. These studies highlight the importance of considering the complete ability of S. pneumoniae to deglycosylate human targets and suggest that in addition to NanA, BgaA and StrH also contribute to pneumococcal colonization and/or pathogenesis.
Journal of Bacteriology | 2008
Amanda M. Burnaugh; Laura J. Frantz; Samantha J. King
In the human host, Streptococcus pneumoniae encounters a variety of glycoconjugates, including mucin, host defense molecules, and glycans associated with the epithelial surface. S. pneumoniae is known to encode a number of glycosidases that may modify these glycoconjugates in vivo. Three exoglycosidases, a neuraminidase (NanA), beta-galactosidase (BgaA), and N-acetylglucosaminidase (StrH), have been previously demonstrated to sequentially deglycosylate N-linked glycans on host defense molecules, which coat the pneumococcal surface in vivo. This cleavage is proposed to alter the clearance function of these molecules, allowing pneumococci to persist in the airway. However, we propose that the exoglycosidase-dependent liberation of monosaccharides from these glycoconjugates in close proximity to the pneumococcal surface provides S. pneumoniae with a convenient source of fermentable carbohydrate in vivo. In this study, we demonstrate that S. pneumoniae is able to utilize complex N-linked human glycoconjugates as a sole source of carbon to sustain growth and that efficient growth is dependent upon the sequential deglycosylation of the glycoconjugate substrate by pneumococcal exoglycosidases. In addition to demonstrating a role for NanA, BgaA, and StrH, we have identified a function for the second pneumococcal neuraminidase, NanB, in the deglycosylation of host glycoconjugates and have demonstrated that NanB activity can partially compensate for the loss or dysfunction of NanA. To date, all known functions of pneumococcal neuraminidase have been attributed to NanA. Thus, this study describes the first proposed role for NanB by which it may contribute to S. pneumoniae colonization and pathogenesis.
Molecular Microbiology | 2004
Samantha J. King; Karen R. Hippe; Jane M. Gould; Deborah Bae; Scott N. Peterson; Robin T. Cline; Claudine E. Fasching; Edward N. Janoff; Jeffrey N. Weiser
Most clinical isolates of Streptococcus pneumoniae consist of heterogeneous populations of at least two colony phenotypes, opaque and transparent, selected for in the bloodstream and nasopharynx, respectively. Microarray analysis revealed 24 orfs that demonstrated differences in expression greater than twofold between variants of independent strains. Twenty‐one of these showed increased expression in the transparent variants, including 11 predicted to be involved in sugar metabolism. A single genomic region contains seven of these loci including the gene that encodes the neuraminidase, NanA. In contrast to previous studies, there was no contribution of NanA to adherence of S. pneumoniae to epithelial cells or colonization in an animal model. However, we observed NanA‐dependent desialylation of human airway components that bind to the organism and may mediate bacterial clearance. Targets of desialylation included human lactoferrin, secretory component, and IgA2 that were shown to be present on the surface of the pneumococcus in vivo during pneumococcal pneumonia. The efficiency of desialylation was increased in the transparent variants and enhanced for host proteins binding to the surface of S. pneumoniae. Because deglycosylation affects the function of many host proteins, NanA may contribute to a protease‐independent mechanism to modify bound targets and facilitate enhanced survival of the bacterium.
Infection and Immunity | 2002
Elizabeth Shakhnovich; Samantha J. King; Jeffrey N. Weiser
ABSTRACT Both Neisseria meningitidis and Haemophilus influenzae are capable of mimicking host structures by decorating their lipopolysaccharides with sialic acid. We show that a neuraminidase expressed by Streptococcus pneumoniae (NanA) is able to desialylate the cell surfaces of both these species, which reside in and possibly compete for the same host niche.
Infection and Immunity | 2007
Aoife M. Roche; Samantha J. King; Jeffrey N. Weiser
ABSTRACT Streptococcus pneumoniae is an important human pathogen causing both mucosal (otitis media and pneumonia) and systemic (sepsis and meningitis) diseases. Due to increasing rates of antibiotic resistance, there is an urgent need to improve prevention of pneumococcal disease. Two currently licensed vaccines have been successful in reducing pneumococcal disease, but there are limitations with their use and effectiveness. Another approach for prevention is the use of live attenuated vaccines. Here we investigate the safety and protection induced by live attenuated strains of S. pneumoniae containing combinations of deletions in genes encoding three of its major virulence determinants: capsular polysaccharide (cps), pneumolysin (ply), and pneumococcal surface protein A (pspA). Both the cps and ply/pspA mutants of a virulent type 6A isolate were significantly attenuated in a mouse model of sepsis. These attenuated strains retained the ability to colonize the upper respiratory tract. A single intranasal administration of live attenuated vaccine without adjuvant was sufficient to induce both systemic and mucosal protection from challenge with a high dose of the parent strain. Immunization with cps mutants demonstrated cross-protective immunity following challenge with a distantly related isolate. Serum and mucosal antibody titers were significantly increased in mice immunized with the vaccine strains, and this antibody is required for full protection, as μMT mice, which do not make functional, specific antibody, were not protected by immunization with vaccine strains. Thus, colonization by live attenuated S. pneumoniae is a potentially safe and less complex vaccine strategy that may offer broad protection.
Journal of Bacteriology | 2005
Samantha J. King; Adrian M. Whatmore; Christopher G. Dowson
Streptococcus pneumoniae, an important human pathogen, contains at least two genes, nanA and nanB, that express sialidase activity. NanA is a virulence determinant of pneumococci which is important in animal models of colonization and middle ear infections. The gene encoding NanA was detected in all 106 pneumococcal strains screened that represented 59 restriction profiles. Sequencing confirmed a high level of diversity, up to 17.2% at the nucleotide level and 14.8% at the amino acid level. NanA diversity is due to a number of mechanisms including insertions, point mutations, and recombination generating mosaic genes. The level of nucleotide divergence for each recombinant block is greater than 30% and much higher than the 20% identified within mosaic pbp genes, suggesting that a high selective pressure exists for these alterations. These data indicate that at least one of the four recombinant blocks identified originated from a Streptococcus oralis isolate, demonstrating for the first time that protein virulence determinants of pneumococci have, as identified previously for genes encoding penicillin binding proteins, evolved by recombination with oral streptococci. No amino acid alterations were identified within the aspartic boxes or predicted active site, suggesting that sequence variation may be important in evading the adaptive immune response. Furthermore, this suggests that nanA is an important target of the immune system in the interaction between the pneumococcus and host.
Infection and Immunity | 2001
Samantha J. King; Peter J. Heath; Inmaculada Luque; Carmen Tarradas; Christopher G. Dowson; Adrian M. Whatmore
ABSTRACT Streptococcus suis is an economically important pathogen of pigs responsible for a variety of diseases including meningitis, septicemia, arthritis, and pneumonia, although little is known about the mechanisms of pathogenesis or virulence factors associated with this organism. Here, we report on the distribution and genetic diversity of the putative virulence factor suilysin, a member of the thiol-activated toxin family of gram-positive bacteria. On the basis of PCR analysis of over 300 isolates of S. suis, the suilysin-encoding gene, sly, was detected in 69.4% of isolates. However, sly was present in a considerably higher proportion of isolates obtained from cases of meningitis, septicemia, and arthritis (>80%) and isolates obtained from asymptomatic tonsillar carriage (>90%) than lung isolates associated with pneumonia (44%). With the exception of serotypes 1, 14, and 1/14, there was no strong correlation between the presence of suilysin and serotype. Analysis of the genetic diversity of suilysin by restriction fragment length polymorphism and sequence analysis found that the suilysin gene, where present, is highly conserved with a maximum of 1.79% diversity at the nucleotide level seen betweensly alleles. Assays of hemolytic activity and hybridization analysis provided no evidence for a second member of the thiol-activated toxin family in S. suis. Inverse PCR was used to characterize regions flanking sly, which in turn allowed the first characterization of the equivalent region in a strain lacking sly. Sequence comparison of these regions fromsly-positive (P1/7) and sly-negative (DH5) strains indicated that two alternative arrangements are both flanked by genes with highest similarity to haloacid dehalogenase-like hydrolases (5′ end) and putativeN-acetylmannosamine-6-phosphate epimerases (3′ end). However, sly appears to be completely absent from the alternative arrangement, and a gene of unknown function is located in the equivalent position. Finally, PCR analysis of multiplesly-positive and -negative strains indicated that these two alternative genetic arrangements are conserved among many S. suis isolates.
Infection and Immunity | 2011
Carolyn Marion; Amanda M. Burnaugh; Shireen A. Woodiga; Samantha J. King
ABSTRACT Streptococcus pneumoniae is a major cause of pneumonia and meningitis. Airway colonization is a necessary precursor to disease, but little is known about how the bacteria establish and maintain colonization. Carbohydrates are required as a carbon source for pneumococcal growth and, therefore, for colonization. Free carbohydrates are not readily available in the naso-oropharynx; however, N- and O-linked glycans are common in the airway. Sialic acid is the most common terminal modification on N- and O-linked glycans and is likely encountered frequently by S. pneumoniae in the airway. Here we demonstrate that sialic acid supports pneumococcal growth when provided as a sole carbon source. Growth on sialic acid requires import into the bacterium. Three genetic regions have been proposed to encode pneumococcal sialic acid transporters: one sodium solute symporter and two ATP binding cassette (ABC) transporters. Data demonstrate that one of these, satABC, is required for transport of sialic acid. A satABC mutant displayed significantly reduced growth on both sialic acid and the human glycoprotein alpha-1. The importance of satABC for growth on human glycoprotein suggests that sialic acid transport may be important in vivo. Indeed, the satABC mutant was significantly reduced in colonization of the murine upper respiratory tract. This work demonstrates that S. pneumoniae is able to use sialic acid as a sole carbon source and that utilization of sialic acid is likely important during pneumococcal colonization.
Infection and Immunity | 2011
Carolyn Marion; Andrew E. Aten; Shireen A. Woodiga; Samantha J. King
ABSTRACT Streptococcus pneumoniae is the leading cause of community-acquired pneumonia and results in over 1 million deaths each year worldwide. Asymptomatic colonization of the airway precedes disease, and acquisition of carbohydrates from the host environment is necessary for bacterial survival. We previously demonstrated that S. pneumoniae cleaves sialic acid from human glycoconjugates to be used as a carbohydrate source. The satABC genes are required for growth and import of sialic acid. The satABC genes are predicted to encode components of an ABC transporter but not the ATPases essential to energize transport. As this subunit is essential, an ATPase must be encoded elsewhere in the genome. We identified msmK as a candidate based on similarity to other known carbohydrate ATPases. Recombinant MsmK hydrolyzed ATP, revealing that MsmK is an ATPase. An msmK mutant was reduced in growth on and transport of sialic acid, demonstrating that MsmK is the ATPase energizing the sialic acid transporter. In addition to satABC, S. pneumoniae contains five other loci that are predicted to encode CUT1 family carbohydrate ABC transporter components; each of these lacks a predicted ATPase. Data indicate that msmK is also required for growth on raffinose and maltotetraose, which are the substrates of two other characterized carbohydrate ABC transporters. Furthermore, an msmK mutant was reduced in airway colonization. Together, these data imply that in vivo, MsmK energizes multiple carbohydrate transporters in S. pneumoniae. This is the first demonstration of a shared ATPase in a pathogenic bacterium.
Infection and Immunity | 2012
Carolyn Marion; Jason M. Stewart; Mia F. Tazi; Amanda M. Burnaugh; Caroline M. Linke; Shireen A. Woodiga; Samantha J. King
ABSTRACT The mechanisms by which Streptococcus pneumoniae obtains carbohydrates for growth during airway colonization remain to be elucidated. The low concentration of free carbohydrates in the normal human airway suggests that pneumococci must utilize complex glycan structures for growth. The glycosaminoglycan hyaluronic acid is present on the apical surface of airway epithelial cells. As pneumococci express a hyaluronate lyase (Hyl) that cleaves hyaluronic acid into disaccharides, we hypothesized that during colonization pneumococci utilize the released carbohydrates for growth. Hyaluronic acid supported significant pneumococcal growth in an hyl-dependent manner. A phosphoenolpyruvate-dependent phosphotransferase system (PTS) and an unsaturated glucuronyl hydrolase (Ugl) encoded downstream of hyl are also essential for growth on hyaluronic acid. This genomic arrangement is present in several other organisms, suggesting conservation of the utilization mechanism between species. In vivo experiments support the hypothesis that S. pneumoniae utilizes hyaluronic acid as a carbon source during colonization. We also demonstrate that pneumococci can utilize the hyaluronic acid capsule of other bacterial species for growth, suggesting an alternative carbohydrate source for pneumococcal growth. Together, these data support a novel function for pneumococcal degradation of hyaluronic acid in vivo and provide mechanistic details of growth on this glycosaminoglycan.
Collaboration
Dive into the Samantha J. King's collaboration.
The Research Institute at Nationwide Children's Hospital
View shared research outputs