Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Samantha K. Chapman is active.

Publication


Featured researches published by Samantha K. Chapman.


Ecology | 2003

INSECT HERBIVORY INCREASES LITTER QUALITY AND DECOMPOSITION: AN EXTENSION OF THE ACCELERATION HYPOTHESIS

Samantha K. Chapman; Stephen C. Hart; Neil S. Cobb; Thomas G. Whitham; George W. Koch

Herbivore alteration of litter inputs may change litter decomposition rates and influence ecosystem nutrient cycling. In a semiarid woodland at Sunset Crater National Monument, Arizona, long-term insect herbivore removal experiments and the presence of herbivore resistant and susceptible pinyon pines (Pinus edulis) have allowed characterization of the population- and community-level effects of herbivory. Here we report how these same two herbivores, the mesophyll-feeding scale insect Matsucoccus acalyptus and the stem-boring moth Dioryctria albovittella alter litter quality, dynamics, and decomposition in this ecosystem. We measured aboveground litterfall, litter chemical composition, and first-year litter decomposition rates for trees resistant and susceptible to both herbivores and for susceptible trees from which herbivores had been experimentally removed for 16–18 years. Both herbivores significantly increased nitrogen concentration and decreased lignin:nitrogen and carbon:nitrogen ratios of abovegrou...


Plant and Soil | 2007

What type of diversity yields synergy during mixed litter decomposition in a natural forest ecosystem

Samantha K. Chapman; George W. Koch

Investigating the relationship of biodiversity and ecosystem function in natural forests allows incorporation of established feedbacks between long-lived plants and soil processes. We studied forested stands in northern Arizona that vary in dominant species richness across small areas. We examined the effects of natural variation in dominant tree biodiversity on ecosystem parameters, particularly litter decomposition. We determined not only whether plant species decompose in mixture as predicted by their individual decomposition rates but also: (1) how particular species affect the decomposition rate of each other in mixture; and (2) whether litter decomposes more rapidly at its site of origin; i.e. is there a “home field advantage” to decomposition? Over a 2-year period, litter mixtures of functionally similar tree species decomposed more rapidly than expected from rates of the individual species alone. Mixtures of conifer species litter decomposed up to 50% faster than expected, with individual conifer members of those mixtures decomposing up to 85% faster than expected. In contrast, more functionally diverse mixtures of litter, which included a deciduous species, did not show synergistic effects during decomposition. We found no significant “home-field advantage” to decomposition. Our study is the first to demonstrate that litter mixtures from more closely related plant species give rise to the most synergistic effects of biodiversity on litter dynamics, indicating that more taxonomically and functionally diverse plant assemblages do not always drive greater emergent effects on ecosystem function.


Oecologia | 2010

Biodiversity at the plant–soil interface: microbial abundance and community structure respond to litter mixing

Samantha K. Chapman; Gregory S. Newman

The interactive effects of diversity in plants and microbial communities at the litter interface are not well understood. Mixtures of plant litter from different species often decompose differently than when individual species decompose alone. Previously, we found that litter mixtures of multiple conifers decomposed more rapidly than expected, but litter mixtures that included conifer and aspen litter did not. Understanding the mechanisms underlying these diversity effects may help explain existing anomalous decay dynamics and provide a glimpse into the elusive linkage between plant diversity and the fungi and bacteria that carry out decomposition. We examined the microbial communities on litter from individual plant species decomposing both in mixture and alone. We assessed two main hypotheses to explain how the decomposer community could stimulate mixed-litter decomposition above predicted rates: either by being more abundant, or having a different or more diverse community structure than when microbes decompose a single species of litter. Fungal, bacterial and total phospholipid fatty acid microbial biomass increased by over 40% on both conifer and aspen litter types in mixture, and microbial community composition changed significantly when plant litter types were mixed. Microbial diversity also increased with increasing plant litter diversity. While our data provide support for both the increased abundance hypothesis and the altered microbial community hypothesis, microbial changes do not translate to predictably altered litter decomposition and may only produce synergisms when mixed litters are functionally similar.


PLOS ONE | 2013

Leaf Litter Mixtures Alter Microbial Community Development: Mechanisms for Non-Additive Effects in Litter Decomposition

Samantha K. Chapman; Gregory S. Newman; Stephen C. Hart; Jennifer A. Schweitzer; George W. Koch

To what extent microbial community composition can explain variability in ecosystem processes remains an open question in ecology. Microbial decomposer communities can change during litter decomposition due to biotic interactions and shifting substrate availability. Though relative abundance of decomposers may change due to mixing leaf litter, linking these shifts to the non-additive patterns often recorded in mixed species litter decomposition rates has been elusive, and links community composition to ecosystem function. We extracted phospholipid fatty acids (PLFAs) from single species and mixed species leaf litterbags after 10 and 27 months of decomposition in a mixed conifer forest. Total PLFA concentrations were 70% higher on litter mixtures than single litter types after 10 months, but were only 20% higher after 27 months. Similarly, fungal-to-bacterial ratios differed between mixed and single litter types after 10 months of decomposition, but equalized over time. Microbial community composition, as indicated by principal components analyses, differed due to both litter mixing and stage of litter decomposition. PLFA biomarkers a15∶0 and cy17∶0, which indicate gram-positive and gram-negative bacteria respectively, in particular drove these shifts. Total PLFA correlated significantly with single litter mass loss early in decomposition but not at later stages. We conclude that litter mixing alters microbial community development, which can contribute to synergisms in litter decomposition. These findings advance our understanding of how changing forest biodiversity can alter microbial communities and the ecosystem processes they mediate.


Plant and Soil | 2014

Plant genetic effects on soils under climate change

Dylan G. Fischer; Samantha K. Chapman; Aimée T. Classen; Catherine A. Gehring; Kevin C. Grady; Jennifer A. Schweitzer; Thomas G. Whitham

BackgroundIn the face of climate change, shifts in genetic structure and composition of terrestrial plant species are occurring worldwide. Because different genotypes of these plant species support different soil biota and soil processes, shifts in genetics are likely to have cascading effects on ecosystems.ScopeWe explore plant genetic effects on soil function in the context of climate change, and selection by soils, soil biota and plant-soil feedbacks. We propose categories of genetically-based plant traits that should be prioritized in research on genetic-based effects on soil processes including plant productivity and C allocation, tissue quality, plant water-use, and rhizosphere mutualisms. Additionally, we posit that soil community responses to climate change should be considered in concert with plant genotype because of sensitivity of soil communities to climate. We use two case studies to highlight these points.ConclusionsWe argue that the effects of climate change as an agent of selection on plants may cascade to affect soils, and ultimately the structure, composition and function of ecosystems. Understanding the ecological and evolutionary potential of plant-soil linkages may help us understand and mitigate the extended consequences of global change for ecosystems worldwide. Accordingly, we conclude with experimental approaches for examining genetically-based plant-soil interactions across climate change gradients.


PLOS ONE | 2013

Phylogenetic Responses of Forest Trees to Global Change

John K. Senior; Jennifer A. Schweitzer; Julianne M. O’Reilly-Wapstra; Samantha K. Chapman; Dorothy A. Steane; Adam Langley; Joseph K. Bailey

In a rapidly changing biosphere, approaches to understanding the ecology and evolution of forest species will be critical to predict and mitigate the effects of anthropogenic global change on forest ecosystems. Utilizing 26 forest species in a factorial experiment with two levels each of atmospheric CO2 and soil nitrogen, we examined the hypothesis that phylogeny would influence plant performance in response to elevated CO2 and nitrogen fertilization. We found highly idiosyncratic responses at the species level. However, significant, among-genetic lineage responses were present across a molecularly determined phylogeny, indicating that past evolutionary history may have an important role in the response of whole genetic lineages to future global change. These data imply that some genetic lineages will perform well and that others will not, depending upon the environmental context.


Plant and Soil | 2011

The roles of biotic resistance and nitrogen deposition in regulating non-native understory plant diversity

Rachel O. Jones; Samantha K. Chapman

Understanding the mechanisms that allow for plant invasions is important for both ecologists and land managers, due to both the environmental and economic impacts of native biodiversity losses. We conducted an observational field study in 2008 to examine the relationship between native and non-native forest understory plant species and to investigate the influence of soil nitrogen (N) on plant community richness and diversity. In 2009, we conducted a companion fertilization experiment to investigate how various forms of N deposition (inorganic and organic) influenced native and non-native species richness and diversity. We found that native species richness and diversity were negatively correlated with 1) non-native species richness and diversity and 2) higher total soil inorganic N. In the deposition experiment, adding organic N fertilizers decreased native richness and diversity compared to inorganic N fertilizers. Together, these results indicate that increasing soil N can be detrimental to native species; however, native species richness and diversity may counteract the N-stimulation of non-native species. Furthermore, the negative effects of organic N deposition on native plants may be just as strong, if not stronger, than the effects of inorganic N deposition.


Ecology | 2016

Chronic warming stimulates growth of marsh grasses more than mangroves in a coastal wetland ecotone

G. A. Coldren; C. R. Barreto; D. D. Wykoff; E. M. Morrissey; J. A. Langley; Ilka C. Feller; Samantha K. Chapman

Increasing temperatures and a reduction in the frequency and severity of freezing events have been linked to species distribution shifts. Across the globe, mangrove ranges are expanding toward higher latitudes, likely due to diminishing frequency of freezing events associated with climate change. Continued warming will alter coastal wetland plant dynamics both above- and belowground, potentially altering plant capacity to keep up with sea level rise. We conducted an in situ warming experiment, in northeast Florida, to determine how increased temperature (+2°C) influences co-occurring mangrove and salt marsh plants. Warming was achieved using passive warming with three treatment levels (ambient, shade control, warmed). Avicennia germinans, the black mangrove, exhibited no differences in growth or height due to experimental warming, but displayed a warming-induced increase in leaf production (48%). Surprisingly, Distichlis spicata, the dominant salt marsh grass, increased in biomass (53% in 2013 and 70% in 2014), density (41%) and height (18%) with warming during summer months. Warming decreased plant root mass at depth and changed abundances of anaerobic bacterial taxa. Even while the poleward shift of mangroves is clearly controlled by the occurrences of severe freezes, chronic warming between these freeze events may slow the progression of mangrove dominance within ecotones.


Ecosphere | 2013

Long-term insect herbivory slows soil development in an arid ecosystem

Aimée T. Classen; Samantha K. Chapman; Thomas G. Whitham; Stephen C. Hart; George W. Koch

Although herbivores are well known to alter litter inputs and soil nutrient fluxes, their long-term influences on soil development are largely unknown because of the difficulty of detecting and attributing changes in carbon and nutrient pools against large background levels. The early phase of primary succession reduces this signal-to-noise problem, particularly in arid systems where individual plants can form islands of fertility. We used natural variation in tree-resistance to herbivory, and a 15 year herbivore-removal experiment in an Arizona pinon-juniper woodland that was established on cinder soils following a volcanic eruption, to quantify how herbivory shapes the development of soil carbon (C) and nitrogen (N) over 36-54 years (i.e., the ages of the trees used in our study). In this semi-arid ecosystem, trees are widely spaced on the landscape, which allows direct examination of herbivore impacts on the nutrient-poor cinder soils. Although chronic insect herbivory increased annual litterfall N per unit area by 50% in this woodland, it slowed annual tree-level soil C and N accumulation by 111% and 96%, respectively. Despite the reduction in soil C accumulation, short-term litterfall-C inputs and soil C-efflux rates per unit soil surface were not impacted by herbivory. Our results demonstrate that the effects of herbivores on soil C and N fluxes and soil C and N accumulation are not necessarily congruent: herbivores can increase N in litterfall, but over time their impact on plant growth and development can slow soil development. In sum, because herbivores slow tree growth, they slow soil development on the landscape.


Hydrobiologia | 2017

Impacts of mangrove encroachment and mosquito impoundment management on coastal protection services

Cheryl L. Doughty; Kyle C. Cavanaugh; Carlton R. Hall; Ilka C. Feller; Samantha K. Chapman

The ecosystem services afforded by coastal wetlands are threatened by climate change and other anthropogenic stressors. The Kennedy Space Center and Merritt Island National Wildlife Refuge in east central Florida offer a representative site for investigating how changes to vegetation distribution interact with management to impact coastal protection. Here, salt marshes are converting to mangroves, and mosquito impoundment structures are being modified. The resulting changes to vegetation composition and topography influence coastal protection services in wetlands. We used a model-based assessment of wave attenuation and erosion to compare vegetation (mangrove, salt marsh) and impoundment state (intact, graded). Our findings suggest that the habitat needed to attenuate 90% of wave height is significantly larger for salt marshes than mangroves. Erosion prevention was significantly higher (470%) in scenarios with mangroves than in salt marshes. Intact berms attenuated waves over shorter distances, but did not significantly reduce erosion. Differences in coastal protection were driven more by vegetation than by impoundment state. Overall, our findings reveal that mangroves provide more coastal protection services, and therefore more coastal protection value, than salt marshes in east central Florida. Other coastal regions undergoing similar habitat conversion may also benefit from increased coastal protection in the future.

Collaboration


Dive into the Samantha K. Chapman's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ilka C. Feller

Smithsonian Environmental Research Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge