Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Samantha Lycett is active.

Publication


Featured researches published by Samantha Lycett.


Nature | 2009

Origins and evolutionary genomics of the 2009 swine-origin H1N1 influenza A epidemic

Gavin J. D. Smith; Dhanasekaran Vijaykrishna; Justin Bahl; Samantha Lycett; Michael Worobey; Oliver G. Pybus; Siu Kit Ma; C. L. Cheung; Jayna Raghwani; Samir Bhatt; J. S. Malik Peiris; Yi Guan; Andrew Rambaut

In March and early April 2009, a new swine-origin influenza A (H1N1) virus (S-OIV) emerged in Mexico and the United States. During the first few weeks of surveillance, the virus spread worldwide to 30 countries (as of May 11) by human-to-human transmission, causing the World Health Organization to raise its pandemic alert to level 5 of 6. This virus has the potential to develop into the first influenza pandemic of the twenty-first century. Here we use evolutionary analysis to estimate the timescale of the origins and the early development of the S-OIV epidemic. We show that it was derived from several viruses circulating in swine, and that the initial transmission to humans occurred several months before recognition of the outbreak. A phylogenetic estimate of the gaps in genetic surveillance indicates a long period of unsampled ancestry before the S-OIV outbreak, suggesting that the reassortment of swine lineages may have occurred years before emergence in humans, and that the multiple genetic ancestry of S-OIV is not indicative of an artificial origin. Furthermore, the unsampled history of the epidemic means that the nature and location of the genetically closest swine viruses reveal little about the immediate origin of the epidemic, despite the fact that we included a panel of closely related and previously unpublished swine influenza isolates. Our results highlight the need for systematic surveillance of influenza in swine, and provide evidence that the mixing of new genetic elements in swine can result in the emergence of viruses with pandemic potential in humans.


Nature | 2013

The genesis and source of the H7N9 influenza viruses causing human infections in China.

Tommy Tsan-Yuk Lam; Jia Wang; Yongyi Shen; Boping Zhou; Lian Duan; C. L. Cheung; Chi Ma; Samantha Lycett; Connie Leung; Xinchun Chen; L Li; Wenshan Hong; Yujuan Chai; Linlin Zhou; Huyi Liang; Zhihua Ou; Yongmei Liu; Amber Farooqui; David J. Kelvin; Leo L.M. Poon; David K. Smith; Oliver G. Pybus; Gabriel M. Leung; Yuelong Shu; Robert G. Webster; Richard J. Webby; J. S. M. Peiris; Andrew Rambaut; Huachen Zhu; Yi Guan

A novel H7N9 influenza A virus first detected in March 2013 has since caused more than 130 human infections in China, resulting in 40 deaths. Preliminary analyses suggest that the virus is a reassortant of H7, N9 and H9N2 avian influenza viruses, and carries some amino acids associated with mammalian receptor binding, raising concerns of a new pandemic. However, neither the source populations of the H7N9 outbreak lineage nor the conditions for its genesis are fully known. Using a combination of active surveillance, screening of virus archives, and evolutionary analyses, here we show that H7 viruses probably transferred from domestic duck to chicken populations in China on at least two independent occasions. We show that the H7 viruses subsequently reassorted with enzootic H9N2 viruses to generate the H7N9 outbreak lineage, and a related previously unrecognized H7N7 lineage. The H7N9 outbreak lineage has spread over a large geographic region and is prevalent in chickens at live poultry markets, which are thought to be the immediate source of human infections. Whether the H7N9 outbreak lineage has, or will, become enzootic in China and neighbouring regions requires further investigation. The discovery here of a related H7N7 influenza virus in chickens that has the ability to infect mammals experimentally, suggests that H7 viruses may pose threats beyond the current outbreak. The continuing prevalence of H7 viruses in poultry could lead to the generation of highly pathogenic variants and further sporadic human infections, with a continued risk of the virus acquiring human-to-human transmissibility.


The Journal of Infectious Diseases | 2011

Transmission network parameters estimated from HIV sequences for a nationwide epidemic.

Andrew Leigh Brown; Samantha Lycett; Lucy A. Weinert; Gareth Hughes; Esther Fearnhill; David Dunn

Background. Many studies of sexual behavior have shown that individuals vary greatly in their number of sexual partners over time, but it has proved difficult to obtain parameter estimates relating to the dynamics of human immunodeficiency virus (HIV) transmission except in small-scale contact tracing studies. Recent developments in molecular phylodynamics have provided new routes to obtain these parameter estimates, and current clinical practice provides suitable data for entire infected populations. Methods. A phylodynamic analysis was performed on partial pol gene sequences obtained for routine clinical care from 14 560 individuals, representing approximately 60% of the HIV-positive men who have sex with men (MSM) under care in the United Kingdom. Results. Among individuals linked to others in the data set, 29% are linked to only 1 individual, 41% are linked to 2–10 individuals, and 29% are linked to ≥10 individuals. The right-skewed degree distribution can be approximated by a power law, but the data are best fitted by a Waring distribution for all time depths. For time depths of 5–7 years, the distribution parameter ρ lies within the range that indicates infinite variance. Conclusions. The transmission network among UK MSM is characterized by preferential association such that a randomly distributed intervention would not be expected to stop the epidemic.


PLOS Pathogens | 2009

Molecular Phylodynamics of the Heterosexual HIV Epidemic in the United Kingdom

Gareth Hughes; Esther Fearnhill; David Dunn; Samantha Lycett; Andrew Rambaut; Andrew Leigh Brown

The heterosexual risk group has become the largest HIV infected group in the United Kingdom during the last 10 years, but little is known of the network structure and dynamics of viral transmission in this group. The overwhelming majority of UK heterosexual infections are of non-B HIV subtypes, indicating viruses originating among immigrants from sub-Saharan Africa. The high rate of HIV evolution, combined with the availability of a very high density sample of viral sequences from routine clinical care has allowed the phylodynamics of the epidemic to be investigated for the first time. Sequences of the viral protease and partial reverse transcriptase coding regions from 11,071 patients infected with HIV of non-B subtypes were studied. Of these, 2774 were closely linked to at least one other sequence by nucleotide distance. Including the closest sequences from the global HIV database identified 296 individuals that were in UK-based groups of 3 or more individuals. There were a total of 8 UK-based clusters of 10 or more, comprising 143/2774 (5%) individuals, much lower than the figure of 25% obtained earlier for men who have sex with men (MSM). Sample dates were incorporated into relaxed clock phylogenetic analyses to estimate the dates of internal nodes. From the resulting time-resolved phylogenies, the internode lengths, used as estimates of maximum transmission intervals, had a median of 27 months overall, over twice as long as obtained for MSM (14 months), with only 2% of transmissions occurring in the first 6 months after infection. This phylodynamic analysis of non-B subtype HIV sequences representing over 40% of the estimated UK HIV-infected heterosexual population has revealed heterosexual HIV transmission in the UK is clustered, but on average in smaller groups and is transmitted with slower dynamics than among MSM. More effective intervention to restrict the epidemic may therefore be feasible, given effective diagnosis programmes.


Science | 2016

Role for migratory wild birds in the global spread of avian influenza H5N8

Samantha Lycett; R. Bodewes; Anne Pohlmann; Jill Banks; C. Bányai; M.F. Boni; R.J. Bouwstra; A.C. Breed; Ian H. Brown; Honglin Chen; Ádám Dán; N. Diep; Marius Gilbert; Sarah C. Hill; H.S. Ip; Changwen Ke; H. Kida; M.L. Killian; Marion Koopmans; J.-H. Kwon; D.-H. Lee; Y.J. Lee; Ling Lu; Isabella Monne; J. Pasick; Oliver G. Pybus; Andrew Rambaut; Timothy P. Robinson; Y. Sakoda; S. Zohari

Migration of influenza in wild birds Virus surveillance in wild birds could offer an early warning system that, combined with adequate farm hygiene, would lead to effective influenza control in poultry units. The Global Consortium for H5N8 and Related Influenza Viruses found that the H5 segment common to the highly pathogenic avian influenza viruses readily reassorts with other influenza viruses (see the Perspective by Russell). H5 is thus a continual source of new pathogenic variants. These data also show that the H5N8 virus that recently caused serious outbreaks in European and North American poultry farms came from migrant ducks, swans, and geese that meet at their Arctic breeding grounds. Because the virus is so infectious, culling wild birds is not an effective control measure. Science, this issue p. 213; see also p. 174 High pathogenicity avian H5 influenza disperses around the Northern Hemisphere in long-distant migrant geese and ducks. Avian influenza viruses affect both poultry production and public health. A subtype H5N8 (clade 2.3.4.4) virus, following an outbreak in poultry in South Korea in January 2014, rapidly spread worldwide in 2014–2015. Our analysis of H5N8 viral sequences, epidemiological investigations, waterfowl migration, and poultry trade showed that long-distance migratory birds can play a major role in the global spread of avian influenza viruses. Further, we found that the hemagglutinin of clade 2.3.4.4 virus was remarkably promiscuous, creating reassortants with multiple neuraminidase subtypes. Improving our understanding of the circumpolar circulation of avian influenza viruses in migratory waterfowl will help to provide early warning of threats from avian influenza to poultry, and potentially human, health.


BMC Bioinformatics | 2013

Automated analysis of phylogenetic clusters

Manon Ragonnet-Cronin; Emma B. Hodcroft; Stéphane Hué; Esther Fearnhill; Valerie Delpech; Andrew Leigh Brown; Samantha Lycett

BackgroundAs sequence data sets used for the investigation of pathogen transmission patterns increase in size, automated tools and standardized methods for cluster analysis have become necessary. We have developed an automated Cluster Picker which identifies monophyletic clades meeting user-input criteria for bootstrap support and maximum genetic distance within large phylogenetic trees. A second tool, the Cluster Matcher, automates the process of linking genetic data to epidemiological or clinical data, and matches clusters between runs of the Cluster Picker.ResultsWe explore the effect of different bootstrap and genetic distance thresholds on clusters identified in a data set of publicly available HIV sequences, and compare these results to those of a previously published tool for cluster identification. To demonstrate their utility, we then use the Cluster Picker and Cluster Matcher together to investigate how clusters in the data set changed over time. We find that clusters containing sequences from more than one UK location at the first time point (multiple origin) were significantly more likely to grow than those representing only a single location.ConclusionsThe Cluster Picker and Cluster Matcher can rapidly process phylogenetic trees containing tens of thousands of sequences. Together these tools will facilitate comparisons of pathogen transmission dynamics between studies and countries.


Systematic Biology | 2016

Fast Dating Using Least-Squares Criteria and Algorithms

Thu Hien To; Matthieu Jung; Samantha Lycett

Phylogenies provide a useful way to understand the evolutionary history of genetic samples, and data sets with more than a thousand taxa are becoming increasingly common, notably with viruses (e.g., human immunodeficiency virus (HIV)). Dating ancestral events is one of the first, essential goals with such data. However, current sophisticated probabilistic approaches struggle to handle data sets of this size. Here, we present very fast dating algorithms, based on a Gaussian model closely related to the Langley–Fitch molecular-clock model. We show that this model is robust to uncorrelated violations of the molecular clock. Our algorithms apply to serial data, where the tips of the tree have been sampled through times. They estimate the substitution rate and the dates of all ancestral nodes. When the input tree is unrooted, they can provide an estimate for the root position, thus representing a new, practical alternative to the standard rooting methods (e.g., midpoint). Our algorithms exploit the tree (recursive) structure of the problem at hand, and the close relationships between least-squares and linear algebra. We distinguish between an unconstrained setting and the case where the temporal precedence constraint (i.e., an ancestral node must be older that its daughter nodes) is accounted for. With rooted trees, the former is solved using linear algebra in linear computing time (i.e., proportional to the number of taxa), while the resolution of the latter, constrained setting, is based on an active-set method that runs in nearly linear time. With unrooted trees the computing time becomes (nearly) quadratic (i.e., proportional to the square of the number of taxa). In all cases, very large input trees (>10,000 taxa) can easily be processed and transformed into time-scaled trees. We compare these algorithms to standard methods (root-to-tip, r8s version of Langley–Fitch method, and BEAST). Using simulated data, we show that their estimation accuracy is similar to that of the most sophisticated methods, while their computing time is much faster. We apply these algorithms on a large data set comprising 1194 strains of Influenza virus from the pdm09 H1N1 Human pandemic. Again the results show that these algorithms provide a very fast alternative with results similar to those of other computer programs. These algorithms are implemented in the LSD software (least-squares dating), which can be downloaded from http://www.atgc-montpellier.fr/LSD/, along with all our data sets and detailed results. An Online Appendix, providing additional algorithm descriptions, tables, and figures can be found in the Supplementary Material available on Dryad at http://dx.doi.org/10.5061/dryad.968t3.


Trends in Microbiology | 2014

Supersize me: how whole-genome sequencing and big data are transforming epidemiology

Rowland R. Kao; Daniel T. Haydon; Samantha Lycett; Pablo R. Murcia

In epidemiology, the identification of ‘who infected whom’ allows us to quantify key characteristics such as incubation periods, heterogeneity in transmission rates, duration of infectiousness, and the existence of high-risk groups. Although invaluable, the existence of many plausible infection pathways makes this difficult, and epidemiological contact tracing either uncertain, logistically prohibitive, or both. The recent advent of next-generation sequencing technology allows the identification of traceable differences in the pathogen genome that are transforming our ability to understand high-resolution disease transmission, sometimes even down to the host-to-host scale. We review recent examples of the use of pathogen whole-genome sequencing for the purpose of forensic tracing of transmission pathways, focusing on the particular problems where evolutionary dynamics must be supplemented by epidemiological information on the most likely timing of events as well as possible transmission pathways. We also discuss potential pitfalls in the over-interpretation of these data, and highlight the manner in which a confluence of this technology with sophisticated mathematical and statistical approaches has the potential to produce a paradigm shift in our understanding of infectious disease transmission and control.


Journal of Virology | 2009

Detection of Mammalian Virulence Determinants in Highly Pathogenic Avian Influenza H5N1 Viruses: Multivariate Analysis of Published Data

Samantha Lycett; Melissa J. Ward; Fraser Lewis; Art F. Y. Poon; S. L. Kosakovsky Pond; A. J. Leigh Brown

ABSTRACT Highly pathogenic avian influenza (HPAI) virus H5N1 infects water and land fowl and can infect and cause mortality in mammals, including humans. However, HPAI H5N1 strains are not equally virulent in mammals, and some strains have been shown to cause only mild symptoms in experimental infections. Since most experimental studies of the basis of virulence in mammals have been small in scale, we undertook a meta-analysis of available experimental studies and used Bayesian graphical models (BGM) to increase the power of inference. We applied text-mining techniques to identify 27 individual studies that experimentally determined pathogenicity in HPAI H5N1 strains comprising 69 complete genome sequences. Amino acid sequence data in all 11 genes were coded as binary data for the presence or absence of mutations related to virulence in mammals or nonconsensus residues. Sites previously implicated as virulence determinants were examined for association with virulence in mammals in this data set, and the sites with the most significant association were selected for further BGM analysis. The analyses show that virulence in mammals is a complex genetic trait directly influenced by mutations in polymerase basic 1 (PB1) and PB2, nonstructural 1 (NS1), and hemagglutinin (HA) genes. Several intra- and intersegment correlations were also found, and we postulate that there may be two separate virulence mechanisms involving particular combinations of polymerase and NS1 mutations or of NS1 and HA mutations.


Journal of Virology | 2013

The Short Stalk Length of Highly Pathogenic Avian Influenza H5N1 Virus Neuraminidase Limits Transmission of Pandemic H1N1 Virus in Ferrets

Deena Blumenkrantz; Kim L. Roberts; Holly Shelton; Samantha Lycett; Wendy S. Barclay

ABSTRACT H5N1 influenza viruses pose a pandemic threat but have not acquired the ability to support sustained transmission between mammals in nature. The restrictions to transmissibility of avian influenza viruses in mammals are multigenic, and overcoming them requires adaptations in hemagglutinin (HA) and PB2 genes. Here we propose that a further restriction to mammalian transmission of the majority of highly pathogenic avian influenza (HPAI) H5N1 viruses may be the short stalk length of the neuraminidase (NA) protein. This genetic feature is selected for when influenza viruses adapt to chickens. In our study, a recombinant virus with seven gene segments from a human isolate of the 2009 H1N1 pandemic combined with the NA gene from a typical chicken-adapted H5N1 virus with a short stalk did not support transmission by respiratory droplet between ferrets. This virus was also compromised in multicycle replication in cultures of human airway epithelial cells at 32°C. These defects correlated with a reduction in the ability of virus with a short-stalk NA to penetrate mucus and deaggregate virions. The deficiency in transmission and in cleavage of tethered substrates was overcome by increasing the stalk length of the NA protein. These observations suggest that H5N1 viruses that acquire a long-stalk NA through reassortment might be more likely to support transmission between humans. Phylogenetic analysis showed that reassortment with long-stalk NA occurred sporadically and as recently as 2011. However, all identified H5N1 viruses with a long-stalk NA lacked other mammalian adapting features and were thus several genetic steps away from becoming transmissible between humans.

Collaboration


Dive into the Samantha Lycett's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Andrew J. Brown

University of New South Wales

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

David Dunn

University College London

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Lu Lu

University of Edinburgh

View shared research outputs
Researchain Logo
Decentralizing Knowledge