Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Samantha Scaramuzza is active.

Publication


Featured researches published by Samantha Scaramuzza.


The New England Journal of Medicine | 2009

Gene Therapy for immunodeficiency due to Adenosine Deaminase Deficiency

Alessandro Aiuti; Federica Cattaneo; Stefania Galimberti; Ulrike Benninghoff; Barbara Cassani; Luciano Callegaro; Samantha Scaramuzza; Grazia Andolfi; Massimiliano Mirolo; Immacolata Brigida; Antonella Tabucchi; Filippo Carlucci; Martha M. Eibl; Memet Aker; Shimon Slavin; Hamoud Al-Mousa; Abdulaziz Al Ghonaium; Alina Ferster; Andrea Duppenthaler; Luigi D. Notarangelo; Uwe Wintergerst; Rebecca H. Buckley; Marco Bregni; Sarah Marktel; Maria Grazia Valsecchi; Pier Luca Rossi; Fabio Ciceri; Miniero R; Claudio Bordignon; Maria Grazia Roncarolo

BACKGROUND We investigated the long-term outcome of gene therapy for severe combined immunodeficiency (SCID) due to the lack of adenosine deaminase (ADA), a fatal disorder of purine metabolism and immunodeficiency. METHODS We infused autologous CD34+ bone marrow cells transduced with a retroviral vector containing the ADA gene into 10 children with SCID due to ADA deficiency who lacked an HLA-identical sibling donor, after nonmyeloablative conditioning with busulfan. Enzyme-replacement therapy was not given after infusion of the cells. RESULTS All patients are alive after a median follow-up of 4.0 years (range, 1.8 to 8.0). Transduced hematopoietic stem cells have stably engrafted and differentiated into myeloid cells containing ADA (mean range at 1 year in bone marrow lineages, 3.5 to 8.9%) and lymphoid cells (mean range in peripheral blood, 52.4 to 88.0%). Eight patients do not require enzyme-replacement therapy, their blood cells continue to express ADA, and they have no signs of defective detoxification of purine metabolites. Nine patients had immune reconstitution with increases in T-cell counts (median count at 3 years, 1.07x10(9) per liter) and normalization of T-cell function. In the five patients in whom intravenous immune globulin replacement was discontinued, antigen-specific antibody responses were elicited after exposure to vaccines or viral antigens. Effective protection against infections and improvement in physical development made a normal lifestyle possible. Serious adverse events included prolonged neutropenia (in two patients), hypertension (in one), central-venous-catheter-related infections (in two), Epstein-Barr virus reactivation (in one), and autoimmune hepatitis (in one). CONCLUSIONS Gene therapy, combined with reduced-intensity conditioning, is a safe and effective treatment for SCID in patients with ADA deficiency. (ClinicalTrials.gov numbers, NCT00598481 and NCT00599781.)


Journal of Clinical Investigation | 2007

Multilineage hematopoietic reconstitution without clonal selection in ADA-SCID patients treated with stem cell gene therapy

Alessandro Aiuti; Barbara Cassani; Grazia Andolfi; Massimiliano Mirolo; Luca Biasco; Fabrizia Urbinati; Cristina Valacca; Samantha Scaramuzza; Memet Aker; Shimon Slavin; Matteo Cazzola; Daniela Sartori; Alessandro Ambrosi; Clelia Di Serio; Maria Grazia Roncarolo; Fulvio Mavilio; Claudio Bordignon

Gene transfer into HSCs is an effective treatment for SCID, although potentially limited by the risk of insertional mutagenesis. We performed a genome-wide analysis of retroviral vector integrations in genetically corrected HSCs and their multilineage progeny before and up to 47 months after transplantation into 5 patients with adenosine deaminase-deficient SCID. Gene-dense regions, promoters, and transcriptionally active genes were preferred retroviral integrations sites (RISs) both in preinfusion transduced CD34(+) cells and in vivo after gene therapy. The occurrence of insertion sites proximal to protooncogenes or genes controlling cell growth and self renewal, including LMO2, was not associated with clonal selection or expansion in vivo. Clonal analysis of long-term repopulating cell progeny in vivo revealed highly polyclonal T cell populations and shared RISs among multiple lineages, demonstrating the engraftment of multipotent HSCs. These data have important implications for the biology of retroviral vectors, the dynamics of genetically modified HSCs, and the safety of gene therapy.


Journal of Experimental Medicine | 2007

WASP regulates suppressor activity of human and murine CD4(+)CD25(+)FOXP3(+) natural regulatory T cells.

Francesco Marangoni; Sara Trifari; Samantha Scaramuzza; Cristina Panaroni; Silvana Martino; Luigi D. Notarangelo; Zeina Baz; Ayse Metin; Federica Cattaneo; Anna Villa; Alessandro Aiuti; Manuela Battaglia; Maria Grazia Roncarolo; Loïc Dupré

A large proportion of Wiskott-Aldrich syndrome (WAS) patients develop autoimmunity and allergy. CD4+CD25+FOXP3+ natural regulatory T (nTreg) cells play a key role in peripheral tolerance to prevent immune responses to self-antigens and allergens. Therefore, we investigated the effect of WAS protein (WASP) deficiency on the distribution and suppressor function of nTreg cells. In WAS−/− mice, the steady-state distribution and phenotype of nTreg cells in the thymus and spleen were normal. However, WAS−/− nTreg cells engrafted poorly in immunized mice, indicating perturbed homeostasis. Moreover, WAS−/− nTreg cells failed to proliferate and to produce transforming growth factor β upon T cell receptor (TCR)/CD28 triggering. WASP-dependent F-actin polarization to the site of TCR triggering might not be involved in WAS−/− nTreg cell defects because this process was also inefficient in wild-type (WT) nTreg cells. Compared with WT nTreg cells, WAS−/− nTreg cells showed reduced in vitro suppressor activity on both WT and WAS−/− effector T cells. Similarly, peripheral nTreg cells were present at normal levels in WAS patients but failed to suppress proliferation of autologous and allogeneic CD4+ effector T cells in vitro. Thus, WASP appears to play an important role in the activation and suppressor function of nTreg cells, and a dysfunction or incorrect localization of nTreg cells may contribute to the development of autoimmunity in WAS patients.


Gene Therapy | 2007

Lentiviral vectors targeting WASp expression to hematopoietic cells, efficiently transduce and correct cells from WAS patients.

Sabine Charrier; Loı̈c Dupré; Samantha Scaramuzza; L Jeanson-Leh; Michael P. Blundell; Olivier Danos; Federica Cattaneo; Alessandro Aiuti; R Eckenberg; Adrian J. Thrasher; M. Grazia Roncarolo; Anne Galy

Gene therapy has been proposed as a potential treatment for Wiskott–Aldrich syndrome (WAS), a severe primary immune deficiency characterized by multiple hematopoietic-specific cellular defects. In order to develop an optimal lentiviral gene transfer cassette for this application, we compared the performance of several internal promoters in a variety of cell lineages from human WAS patients. Vectors using endogenous promoters derived from short (0.5 kb) or long (1.6 kb) 5′ flanking sequences of the WAS gene, expressed the transgene in T, B, dendritic cells as well as CD34+ progenitor cells, but functioned poorly in non-hematopoietic cells. Defects of T-cell proliferation and interleukin-2 production, and the cytoskeletal anomalies in WAS dendritic cells were also corrected. The levels of reconstitution were comparable to those obtained following transduction with similar lentiviral vectors incorporating constitutive PGK-1, EF1-alpha promoters or the spleen focus forming virus gammaretroviral LTR. Thus, native regulatory sequences target the expression of the therapeutic WAS transgene to the hematopoietic system, as is naturally the case for WAS, and are effective for correction of multiple cellular defects. These vectors may have significant advantages for clinical application in terms of natural gene regulation, and reduction in the potential for adverse mutagenic events.


Journal of Immunology | 2006

Defective Th1 cytokine gene transcription in CD4+ and CD8+ T cells from Wiskott-Aldrich syndrome patients.

Sara Trifari; Giovanni Sitia; Alessandro Aiuti; Samantha Scaramuzza; Francesco Marangoni; Luca G. Guidotti; Silvana Martino; Paola Saracco; Luigi D. Notarangelo; Maria Grazia Roncarolo; Loïc Dupré

Wiskott-Aldrich syndrome (WAS) protein (WASP) plays a key role in TCR-mediated activation and immunological synapse formation. However, the effects of WASP deficiency on effector functions of human CD4+ and CD8+ T cells remain to be determined. In this study, we report that TCR/CD28-driven proliferation and secretion of IL-2, IFN-γ, and TNF-α are strongly reduced in CD8+ T cells from WAS patients, compared with healthy donor CD8+ T cells. Furthermore, WAS CD4+ T cells secrete low levels of IL-2 and fail to produce IFN-γ and TNF-α, while the production of IL-4, IL-5, and IL-10 is only minimally affected. Defective IL-2 and IFN-γ production persists after culture of naive WAS CD4+ T cells in Th1-polarizing conditions. The defect in Th1 cytokine production by WAS CD4+ and CD8+ T cells is also present at the transcriptional level, as shown by reduced IL-2 and IFN-γ mRNA transcripts after TCR/CD28 triggering. The reduced transcription of Th1 cytokine genes in WAS CD4+ T cells is associated with a defective induction of T-bet mRNA and a reduction in the early nuclear recruitment of NFAT-1, while the defective activation of WAS CD8+ T cells correlates with reduced nuclear recruitment of both NFAT-1 and NFAT-2. Together, our data indicate that WASP regulates the transcriptional activation of T cells and is required specifically for Th1 cytokine production.


Molecular Therapy | 2009

Evidence for Long-term Efficacy and Safety of Gene Therapy for Wiskott–Aldrich Syndrome in Preclinical Models

Francesco Marangoni; Marita Bosticardo; Sabine Charrier; Elena Draghici; Michela Locci; Samantha Scaramuzza; Cristina Panaroni; Maurilio Ponzoni; Francesca Sanvito; Claudio Doglioni; Marie Liabeuf; Bernard Gjata; Marie Montus; Katherine A. Siminovitch; Alessandro Aiuti; Luigi Naldini; Loïc Dupré; Maria Grazia Roncarolo; Anne Galy; Anna Villa

Wiskott-Aldrich Syndrome (WAS) is a life-threatening X-linked disease characterized by immunodeficiency, thrombocytopenia, autoimmunity, and malignancies. Gene therapy could represent a therapeutic option for patients lacking a suitable bone marrow (BM) donor. In this study, we analyzed the long-term outcome of WAS gene therapy mediated by a clinically compatible lentiviral vector (LV) in a large cohort of was(null) mice. We demonstrated stable and full donor engraftment and Wiskott-Aldrich Syndrome protein (WASP) expression in various hematopoietic lineages, up to 12 months after gene therapy. Importantly, we observed a selective advantage for T and B lymphocytes expressing transgenic WASP. T-cell receptor (TCR)-driven T-cell activation, as well as B-cells ability to migrate in response to CXCL13, was fully restored. Safety was evaluated throughout the long-term follow-up of primary and secondary recipients of WAS gene therapy. WAS gene therapy did not affect the lifespan of treated animals. Both hematopoietic and nonhematopoietic tumors arose, but we excluded the association with gene therapy in all cases. Demonstration of long-term efficacy and safety of WAS gene therapy mediated by a clinically applicable LV is a key step toward the implementation of a gene therapy clinical trial for WAS.


Blood | 2012

Alterations in the adenosine metabolism and CD39/CD73 adenosinergic machinery cause loss of Treg cell function and autoimmunity in ADA-deficient SCID.

Aisha V. Sauer; Immacolata Brigida; Nicola Carriglio; Raisa Jofra Hernandez; Samantha Scaramuzza; Daniela Clavenna; Francesca Sanvito; Pietro Luigi Poliani; Nicola Gagliani; Filippo Carlucci; Antonella Tabucchi; Maria Grazia Roncarolo; Elisabetta Traggiai; Anna Villa; Alessandro Aiuti

Adenosine acts as anti-inflammatory mediator on the immune system and has been described in regulatory T cell (Treg)-mediated suppression. In the absence of adenosine deaminase (ADA), adenosine and other purine metabolites accumulate, leading to severe immunodeficiency with recurrent infections (ADA-SCID). Particularly ADA-deficient patients with late-onset forms and after enzyme replacement therapy (PEG-ADA) are known to manifest immune dysregulation. Herein we provide evidence that alterations in the purine metabolism interfere with Treg function, thereby contributing to autoimmune manifestations in ADA deficiency. Tregs isolated from PEG-ADA-treated patients are reduced in number and show decreased suppressive activity, whereas they are corrected after gene therapy. Untreated murine ADA(-/-) Tregs show alterations in the plasma membrane CD39/CD73 ectonucleotidase machinery and limited suppressive activity via extracellular adenosine. PEG-ADA-treated mice developed multiple autoantibodies and hypothyroidism in contrast to mice treated with bone marrow transplantation or gene therapy. Tregs isolated from PEG-ADA-treated mice lacked suppressive activity, suggesting that this treatment interferes with Treg functionality. The alterations in the CD39/CD73 adenosinergic machinery and loss of function in ADA-deficient Tregs provide new insights into a predisposition to autoimmunity and the underlying mechanisms causing defective peripheral tolerance in ADA-SCID.


Journal of Autoimmunity | 2014

Wiskott-Aldrich Syndrome protein deficiency perturbs the homeostasis of B-cell compartment in humans

Maria Carmina Castiello; Marita Bosticardo; Francesca Pala; Marco Catucci; Nicolas Chamberlain; Menno C. van Zelm; Gertjan J. Driessen; Małgorzata Pac; Ewa Bernatowska; Samantha Scaramuzza; Alessandro Aiuti; Aisha V. Sauer; Elisabetta Traggiai; Eric Meffre; Anna Villa; Mirjam van der Burg

Wiskott–Aldrich Syndrome protein (WASp) regulates the cytoskeleton in hematopoietic cells and mutations in its gene cause the Wiskott–Aldrich Syndrome (WAS), a primary immunodeficiency with microthrombocytopenia, eczema and a higher susceptibility to develop tumors. Autoimmune manifestations, frequently observed in WAS patients, are associated with an increased risk of mortality and still represent an unsolved aspect of the disease. B cells play a crucial role both in immune competence and self-tolerance and defects in their development and function result in immunodeficiency and/or autoimmunity. We performed a phenotypical and molecular analysis of central and peripheral B-cell compartments in WAS pediatric patients. We found a decreased proportion of immature B cells in the bone marrow correlating with an increased presence of transitional B cells in the periphery. These results could be explained by the defective migratory response of WAS B cells to SDF-1α, essential for the retention of immature B cells in the BM. In the periphery, we observed an unusual expansion of CD21low B-cell population and increased plasma BAFF levels that may contribute to the high susceptibility to develop autoimmune manifestations in WAS patients. WAS memory B cells were characterized by a reduced in vivo proliferation, decreased somatic hypermutation and preferential usage of IGHV4-34, an immunoglobulin gene commonly found in autoreactive B cells. In conclusion, our findings demonstrate that WASp-deficiency perturbs B-cell homeostasis thus adding a new layer of immune dysregulation concurring to the increased susceptibility to develop autoimmunity in WAS patients.


Molecular Therapy | 2015

Dual-regulated Lentiviral Vector for Gene Therapy of X-linked Chronic Granulomatosis

Maria Chiriaco; Giada Farinelli; Valentina Capo; Erika Zonari; Samantha Scaramuzza; Gigliola Di Matteo; Lucia Sergi Sergi; Maddalena Migliavacca; Raisa Jofra Hernandez; Ferdinando Bombelli; Ezio Giorda; Anna Kajaste-Rudnitski; Didier Trono; Manuel Grez; Paolo Rossi; Andrea Finocchi; Luigi Naldini; Bernhard Gentner; Alessandro Aiuti

Regulated transgene expression may improve the safety and efficacy of hematopoietic stem cell (HSC) gene therapy. Clinical trials for X-linked chronic granulomatous disease (X-CGD) employing gammaretroviral vectors were limited by insertional oncogenesis or lack of persistent engraftment. Our novel strategy, based on regulated lentiviral vectors (LV), targets gp91(phox) expression to the differentiated myeloid compartment while sparing HSC, to reduce the risk of genotoxicity and potential perturbation of reactive oxygen species levels. Targeting was obtained by a myeloid-specific promoter (MSP) and posttranscriptional, microRNA-mediated regulation. We optimized both components in human bone marrow (BM) HSC and their differentiated progeny in vitro and in a xenotransplantation model, and generated therapeutic gp91(phox) expressing LVs for CGD gene therapy. All vectors restored gp91(phox) expression and function in human X-CGD myeloid cell lines, primary monocytes, and differentiated myeloid cells. While unregulated LVs ectopically expressed gp91(phox) in CD34(+) cells, transcriptionally and posttranscriptionally regulated LVs substantially reduced this off-target expression. X-CGD mice transplanted with transduced HSC restored gp91(phox) expression, and MSP-driven vectors maintained regulation during BM development. Combining transcriptional (SP146.gp91-driven) and posttranscriptional (miR-126-restricted) targeting, we achieved high levels of myeloid-specific transgene expression, entirely sparing the CD34(+) HSC compartment. This dual-targeted LV construct represents a promising candidate for further clinical development.


The Journal of Allergy and Clinical Immunology | 2010

Revertant T lymphocytes in a patient with Wiskott-Aldrich syndrome: Analysis of function and distribution in lymphoid organs

Sara Trifari; Samantha Scaramuzza; Marco Catucci; Maurilio Ponzoni; Luca Mollica; Robert Chiesa; Federica Cattaneo; Fanny Lafouresse; Ronan Calvez; William Vermi; Daniela Medicina; Maria Carmina Castiello; Francesco Marangoni; Marita Bosticardo; Claudio Doglioni; Maurizio Caniglia; Alessandro Aiuti; Anna Villa; Maria Grazia Roncarolo; Loïc Dupré

BACKGROUND The Wiskott-Aldrich syndrome (WAS) is a rare genetic disease characterized by thrombocytopenia, immunodeficiency, autoimmunity, and hematologic malignancies. Secondary mutations leading to re-expression of WAS protein (WASP) are relatively frequent in patients with WAS. OBJECTIVE The tissue distribution and function of revertant cells were investigated in a novel case of WAS gene secondary mutation. METHODS A vast combination of approaches was used to characterize the second-site mutation, to investigate revertant cell function, and to track their distribution over a 18-year clinical follow-up. RESULTS The WAS gene secondary mutation was a 4-nucleotide insertion, 4 nucleotides downstream of the original deletion. This somatic mutation allowed the T-cell-restricted expression of a stable, full-length WASP with a 3-amino acid change compared with the wild-type protein. WASP(+) T cells appeared early in the spleen (age 10 years) and were highly enriched in a mesenteric lymph node at a later time (age 23 years). Revertant T cells had a diversified T-cell-receptor repertoire and displayed in vitro and in vivo selective advantage. They proliferated and produced cytokines normally on T-cell-receptor stimulation. Consistently, the revertant WASP correctly localized to the immunologic synapse and to the leading edge of migrating T cells. CONCLUSION Despite the high proportion of functional revertant T cells, the patient still has severe infections and autoimmune disorders, suggesting that re-expression of WASP in T cells is not sufficient to normalize immune functions fully in patients with WAS.

Collaboration


Dive into the Samantha Scaramuzza's collaboration.

Top Co-Authors

Avatar

Alessandro Aiuti

Vita-Salute San Raffaele University

View shared research outputs
Top Co-Authors

Avatar

Maria Grazia Roncarolo

Vita-Salute San Raffaele University

View shared research outputs
Top Co-Authors

Avatar

Luigi Naldini

Vita-Salute San Raffaele University

View shared research outputs
Top Co-Authors

Avatar

Anna Villa

National Research Council

View shared research outputs
Top Co-Authors

Avatar

Marita Bosticardo

Vita-Salute San Raffaele University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Francesco Marangoni

Vita-Salute San Raffaele University

View shared research outputs
Top Co-Authors

Avatar

Maria Carmina Castiello

Vita-Salute San Raffaele University

View shared research outputs
Top Co-Authors

Avatar

Francesca Ferrua

Vita-Salute San Raffaele University

View shared research outputs
Top Co-Authors

Avatar

Immacolata Brigida

Vita-Salute San Raffaele University

View shared research outputs
Researchain Logo
Decentralizing Knowledge