Samantha Solito
University of Padua
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Samantha Solito.
Immunity | 2010
Ilaria Marigo; Erika Bosio; Samantha Solito; Circe Mesa; Audry Fernández; Luigi Dolcetti; Stefano Ugel; Nada Sonda; Silvio Bicciato; Erika Falisi; Fiorella Calabrese; Giuseppe Basso; Paola Zanovello; Emanuele Cozzi; Susanna Mandruzzato; Vincenzo Bronte
Tumor growth is associated with a profound alteration in myelopoiesis, leading to recruitment of immunosuppressive cells known as myeloid-derived suppressor cells (MDSCs). We showed that among factors produced by various experimental tumors, the cytokines GM-CSF, G-CSF, and IL-6 allowed a rapid generation of MDSCs from precursors present in mouse and human bone marrow (BM). BM-MDSCs induced by GM-CSF+IL-6 possessed the highest tolerogenic activity, as revealed by the ability to impair the priming of CD8(+) T cells and allow long term acceptance of pancreatic islet allografts. Cytokines inducing MDSCs acted on a common molecular pathway and the immunoregulatory activity of both tumor-induced and BM-derived MDSCs was entirely dependent on the C/EBPbeta transcription factor. Adoptive transfer of tumor antigen-specific CD8(+) T lymphocytes resulted in therapy of established tumors only in mice lacking C/EBPbeta in the myeloid compartment, suggesting that C/EBPbeta is a critical regulator of the immunosuppressive environment created by growing cancers.
Journal of Immunology | 2009
Susanna Mandruzzato; Samantha Solito; Erika Falisi; Samuela Francescato; Vanna Chiarion-Sileni; Simone Mocellin; Antonio Zanon; Carlo Riccardo Rossi; Donato Nitti; Vincenzo Bronte; Paola Zanovello
Myeloid-derived suppressor cells (MDSC) contribute to immune dysfunctions induced by tumors both in experimental models and patients. In mice, MDSC are phenotypically heterogeneous cells that vary in their surface markers, likely depending on soluble factors produced by different tumors. We recently described a subset of inflammatory monocytes with immunosuppressive properties that can be found within the tumor mass, blood, and lymphoid organs of tumor-bearing mice. These cells expressed the α-chain of the receptor for IL-4 (IL4Rα) that was critical for their negative activity on CD8+ T cells. In cancer patients, the nature of MDSC is still poorly defined because evidence exists for both monocytic and granulocytic features. We show in this study that myeloid cells with immunosuppressive properties accumulate both in mononuclear and polymorphonuclear fractions of circulating blood leukocytes of patients with colon cancer and melanoma, thus unveiling a generalized alteration in the homeostasis of the myeloid compartment. Similarly to mouse MDSC, IL4Rα is up-regulated in both myeloid populations but its presence correlates with an immunosuppressive phenotype only when mononuclear cells, but not granulocytes, of tumor-bearing patients are considered.
Blood | 2011
Samantha Solito; Erika Falisi; Claudia Marcela Diaz-Montero; Andrea Doni; Laura Pinton; Antonio Rosato; Samuela Francescato; Giuseppe Basso; Paola Zanovello; Georgiana Onicescu; Elizabeth Garrett-Mayer; Alberto J. Montero; Vincenzo Bronte; Susanna Mandruzzato
We recently demonstrated that human BM cells can be treated in vitro with defined growth factors to induce the rapid generation of myeloid-derived suppressor cells (MDSCs), hereafter defined as BM-MDSCs. Indeed, combination of G-CSF + GM-CSF led to the development of a heterogeneous mixture of immature myeloid cells ranging from myeloblasts to band cells that were able to suppress alloantigen- and mitogen-stimulated T lymphocytes. Here, we further investigate the mechanism of suppression and define the cell subset that is fully responsible for BM-MDSC-mediated immune suppression. This population, which displays the structure and markers of promyelocytes, is however distinct from physiologic promyelocytes that, instead, are devoid of immuosuppressive function. In addition, we demonstrate that promyelocyte-like cells proliferate in the presence of activated lymphocytes and that, when these cells exert suppressive activity, they do not differentiate but rather maintain their immature phenotype. Finally, we show that promyelocyte-like BM-MDSCs are equivalent to MDSCs present in the blood of patients with breast cancer and patients with colorectal cancer and that increased circulating levels of these immunosuppressive myeloid cells correlate with worse prognosis and radiographic progression.
Annals of the New York Academy of Sciences | 2014
Samantha Solito; Ilaria Marigo; Laura Pinton; Vera Damuzzo; Susanna Mandruzzato; Vincenzo Bronte
The dynamic interplay between cancer and host immune system often affects the process of myelopoiesis. As a consequence, tumor‐derived factors sustain the accumulation and functional differentiation of myeloid cells, including myeloid‐derived suppressor cells (MDSCs), which can interfere with T cell–mediated responses. Since both the phenotype and mechanisms of action of MDSCs appear to be tumor‐dependent, it is important not only to determine the presence of all MDSC subsets in each cancer patient, but also which MDSC subsets have clinical relevance in each tumor environment. In this review, we describe the differences between MDSC populations expanded within different tumor contexts and evaluate the prognostic significance of MDSC expansion in peripheral blood and within tumor masses of neoplastic patients.
Journal of Leukocyte Biology | 2011
Samantha Solito; Vincenzo Bronte; Susanna Mandruzzato
Among the mechanisms set in motion by the tumor to escape the control of the immune system, MDSCs play a central role in inducing tolerance to a variety of anti‐tumor effectors, including T lymphocytes. It has been demonstrated that MDSCs expand in tumor‐bearing mice and in cancer patients, leading to an impairment of T cell reactivity against the tumor. However, as the presence of MDSCs is not correlated with a general immune suppression, it was advanced that a mechanism regulating the specificity of MDSC inhibition must be present. In this article, we review the literature showing that MDSCs exert their immune‐suppressive function on Ag‐specific T cell responses but at times, also on mitogen‐activated T lymphocytes, therefore bypassing the Ag dependency. We propose that the features of MDSC‐mediated immune suppression might be influenced not only by the specific microenvironment in which MDSCs expand and by the tumor characteristics but also by the levels of activation of the target lymphocytes.
Cytometry Part B-clinical Cytometry | 2014
Vera Damuzzo; Laura Pinton; Giacomo Desantis; Samantha Solito; Ilaria Marigo; Vincenzo Bronte; Susanna Mandruzzato
Study of myeloid cells endowed with suppressive activity is an active field of research which has particular importance in cancer, in view of the negative regulatory capacity of these cells to the hosts immune response. The expansion of these cells, called myeloid‐derived suppressor cells (MDSCs), has been documented in many models of tumor‐bearing mice and in patients with tumors of various origin, and their presence is associated with disease progression and reduced survival. For this reason, monitoring this type of cell expansion is of clinical importance, and flow cytometry is the technique of choice for their identification. Over the years, it has been demonstrated that MDSCs comprise a group of immature myeloid cells belonging both to monocytic and granulocytic lineages, with several stages of differentiation; their occurrence depends on tumor‐derived soluble factors, which guide their expansion and determine their block of differentiation. Because of their heterogeneous composition, accurate phenotyping of these cells requires a multicolor approach, so that the expansion of all MDSC subsets can be appreciated.
Biochimica et Biophysica Acta | 2016
Francesco De Sanctis; Samantha Solito; Stefano Ugel; Barbara Molon; Vincenzo Bronte; Ilaria Marigo
The incomplete clinical efficacy of anti-tumor immunotherapy can depend on the presence of an immunosuppressive environment in the host that supports tumor progression. Tumor-derived cytokines and growth factors induce an altered hematopoiesis that modifies the myeloid cell differentiation process, promoting proliferation and expansion of cells with immunosuppressive skills, namely myeloid derived suppressor cells (MDSCs). MDSCs promote tumor growth not only by shaping immune responses towards tumor tolerance, but also by supporting several processes necessary for the neoplastic progression such as tumor angiogenesis, cancer stemness, and metastasis dissemination. Thus, MDSC targeting represents a promising tool to eliminate host immune dysfunctions and increase the efficacy of immune-based cancer therapies.
Oncotarget | 2016
Laura Pinton; Samantha Solito; Vera Damuzzo; Samuela Francescato; Assunta Pozzuoli; Antonio Berizzi; Simone Mocellin; Carlo Riccardo Rossi; Vincenzo Bronte; Susanna Mandruzzato
The expansion of myeloid derived suppressor cells (MDSCs), a suppressive population able to hamper the immune response against cancer, correlates with tumor progression and overall survival in several cancer types. We have previously shown that MDSCs can be induced in vitro from precursors present in the bone marrow and observed that these cells are able to actively proliferate in the presence of activated T cells, whose activation level is critical to drive the suppressive activity of MDSCs. Here we investigated at molecular level the mechanisms involved in the interplay between MDSCs and activated T cells. We found that activated T cells secrete IL-10 following interaction with MDSCs which, in turn, activates STAT3 phosphorylation on MDSCs then leading to B7-H1 expression. We also demonstrated that B7-H1+ MDSCs are responsible for immune suppression through a mechanism involving ARG-1 and IDO expression. Finally, we show that the expression of ligands B7-H1 and MHC class II both on in vitro-induced MDSCs and on MDSCs in the tumor microenvironment of cancer patients is paralleled by an increased expression of their respective receptors PD-1 and LAG-3 on T cells, two inhibitory molecules associated with T cell dysfunction. These findings highlight key molecules and interactions responsible for the extensive cross-talk between MDSCs and activated T cells that are at the basis of immune suppression.
Immunological Investigations | 2012
Samantha Solito; Laura Pinton; Vera Damuzzo; Susanna Mandruzzato
MDSCs have been recognized in the last years as tolerogenic cells, potentially dangerous in the context of neoplasia, since they are able to induce tolerance to a variety of anti-tumor effectors, including CD4+ and CD8+ T cells. It is currently believed that the origin of MDSCs is due to an arrest of the myeloid differentiation process caused by tumor-secreted factors released in the tumor microenvironment that are able to exert an effect on myeloid progenitors, rendering them unable to terminally differentiate into dendritic cells, granulocytes and macrophages. As a consequence, these immature myeloid cells acquire suppressive activity through the activation of several mechanisms, controlled by different transcription factors. The lack of consensus about the phenotypical characterization of human MDSCs is the result of the existence of different MDSC subsets, most likely depending on the tumor in which they expand and on the tumor specific cytokine cocktail driving their activation. This, in turn, might also influence the mechanisms of MDSC-mediated immune suppression. In this review article we address the role of tumor-derived factors (TDFs) in MDSC-recruitment and activation, discuss the complex heterogeneity of MDSC phenotype and analyze the crosstalk between activated T cells and MDSCs.
Biomaterials | 2016
Maria Stella Sasso; Giovanna Lollo; Marion Pitorre; Samantha Solito; Laura Pinton; Sara Valpione; Guillaume Bastiat; Susanna Mandruzzato; Vincenzo Bronte; Ilaria Marigo; Jean-Pierre Benoit
Tumor-induced expansion of myeloid-derived suppressor cells (MDSCs) is known to impair the efficacy of cancer immunotherapy. Among pharmacological approaches for MDSC modulation, chemotherapy with selected drugs has a considerable interest due to the possibility of a rapid translation to the clinic. However, such approach is poorly selective and may be associated with dose-dependent toxicities. In the present study, we showed that lipid nanocapsules (LNCs) loaded with a lauroyl-modified form of gemcitabine (GemC12) efficiently target the monocytic (M-) MDSC subset. Subcutaneous administration of GemC12-loaded LNCs reduced the percentage of spleen and tumor-infiltrating M-MDSCs in lymphoma and melanoma-bearing mice, with enhanced efficacy when compared to free gemcitabine. Consistently, fluorochrome-labeled LNCs were preferentially uptaken by monocytic cells rather than by other immune cells, in both tumor-bearing mice and human blood samples from healthy donors and melanoma patients. Very low dose administration of GemC12-loaded LNCs attenuated tumor-associated immunosuppression and increased the efficacy of adoptive T cell therapy. Overall, our results show that GemC12-LNCs have monocyte-targeting properties that can be useful for immunomodulatory purposes, and unveil new possibilities for the exploitation of nanoparticulate drug formulations in cancer immunotherapy.