Sameer R. Paital
University of Tennessee
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Sameer R. Paital.
Acta Biomaterialia | 2009
Sameer R. Paital; Narendra B. Dahotre
Surface-textured calcium phosphate coatings at four different length scales were synthesized on titanium-based alloys using a pulsed Nd:YAG laser system by a direct melting technique. The textures were obtained by varying the laser spot overlap with a change in laser traverse speed. Surface roughness measurements of the textured coatings carried out using a white light interferometer indicated a decrease in roughness with increasing laser scan speed. Wettability of the coated samples measured using a static sessile drop technique demonstrated an increased hydrophilicity with increasing laser scan speed. The influence of such textures and the associated surface roughness on the precipitation kinetics of hydroxyapatite (HA) during immersion in simulated body fluid (SBF) was the prime focus of the present paper. The mineralized samples obtained after immersion in SBF were characterized using X-ray diffraction, energy-dispersive spectroscopy and scanning electron microscopy to understand the kinetics of HA precipitation. The results thereafter confirmed that the precipitation kinetics of HA was strongly modulated by the varying surface roughness.
Philosophical Transactions of the Royal Society A | 2010
Narendra B. Dahotre; Sameer R. Paital; Anoop N. Samant; Claus Daniel
Wettability at the surface of an implant material plays a key role in its success as it modulates the protein adsorption and thereby influences cell attachment and tissue integration at the interface. Hence, surface engineering of implantable materials to enhance wettability to physiological fluid under in vivo conditions is an area of active research. In light of this, in the present work, laser-based optical interference and direct melting techniques were used to develop synthetic microtextures on Ti–6Al–4V alloys, and their effects on wettability were studied systematically. Improved wettability to simulated body fluid and distilled water was observed for Ca–P coatings obtained by direct melting technique. This superior wettability was attributed to both the appropriate surface chemistry and the three-dimensional surface features obtained using this technique. To assert a better control on surface texture and wettability, a three-dimensional thermal model based on COMSOL’s multiphysics was employed to predict the features obtained by laser melting technique. The effect of physical texture and wetting on biocompatibility of laser-processed Ca–P coatings was evaluated in the preliminary efforts on culturing of mouse MC3T3-E1 osteoblast cells.
Biomedical Materials | 2007
Sameer R. Paital; Narendra B. Dahotre
In the present paper the feasibility of depositing a porous calcium phosphate (CaP) bio-ceramic coating using a continuous wave Nd:YAG laser on a Ti-6Al-4V substrate has been demonstrated. The advantages offered by such porous bio-ceramic coating are its inertness combined with the mechanical stability of the highly convoluted interface that develops when bone grows into the pores of ceramic. The formation of different phases with varying laser fluences is studied using x-ray diffraction (XRD). A quantitative estimation of the crystallite size and relative amounts of Ti and other predominant phases such as TiO(2) and alpha-tricalcium phosphate (alpha-TCP) were obtained. An increase in the crystallite size with increasing laser fluence is observed for all the above three phases. It is observed that TiO(2) is the predominant phase for all laser fluences and there is an increase in the alpha-TCP phase with increasing laser fluence. Surface porosity measurements indicated a decreasing trend with increasing laser fluence. Microhardness measurements in the cross section of samples showed a maximum hardness within the coating. The bioactivity of the coatings was further demonstrated by the formation of an apatite-like layer on the surface of the sample after being immersed in a simulated biofluid.
Metallurgical and Materials Transactions A-physical Metallurgy and Materials Science | 2012
Shravana Katakam; Jun Y. Hwang; Sameer R. Paital; Rajarshi Banerjee; Hitesh D. Vora; Narendra B. Dahotre
Iron-based amorphous materials, owing to their very high hardness, elastic modulus, wear resistance, and corrosion resistance, can be potential materials for surface modification and engineering of many structural alloys. The current study focuses on a novel functional coating, synthesized via laser cladding of an iron-based (Fe48Cr15Mo14Y2C15B) amorphous precursor powder, on AISI 4130 steel substrate, using a continuous-wave diode-pumped ytterbium laser. The coatings were characterized by different techniques like X-ray diffraction (XRD), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). SEM and TEM studies indicated the presence of Fe-based nanocrystalline dendrites intermixed within an amorphous matrix. A three-dimensional thermal modeling approach based on COMSOL Multiphysics (COMSOL Inc., Burlington, MA) was used to approximately predict the temperature evolution and cooling rates achieved during laser processing. The mechanisms for the formation of crystalline phases and the morphological changes in the microstructure were studied based on the thermal model developed. Although the thermal model predicted substantially high cooling rates as compared to the critical cooling rate required for retaining an amorphous phase, the formation of crystalline phases is attributed to formation of yttrium oxide, reducing the glass-forming ability, and formation of different oxide phases that act as heterogeneous nucleation sites resulting in the composite microstructure.
Biomedical Materials | 2009
Sameer R. Paital; Kantesh Balani; Arvind Agarwal; Narendra B. Dahotre
In the present paper, we demonstrate the feasibility of depositing a tailored calcium phosphate (Ca-P) coating on a Ti-6Al-4V substrate by using a pulsed Nd:YAG laser system. Different textures were obtained by varying the laser spot overlap with change in laser traverse speed. Surface roughness measurements using laser confocal microscopy indicated a decrease in roughness with increasing laser scan speed. X-ray diffraction studies revealed the formation of alpha-TCP, TiO2, Ti and Al as the major phases. An instrumented nanoindenation technique used to study the mechanical properties of the coatings, revealed a very high hardness and Youngs modulus of the coating surface as compared to the substrate. This further proved the retainment of the ceramic phase on the surface. Wear studies in a simulated biofluid (SBF) environment demonstrated an increased wear resistance of the coated samples as compared to the bare Ti-6Al-4V. Formation of an apatite-like layer after immersion in SBF for different time periods further demonstrated the bioactivity of the coated samples.
Materials Science and Engineering: C | 2013
S. Nag; Sameer R. Paital; Peeyush Nandawana; Kristopher Mahdak; Yee Hsien Ho; Hitesh D. Vora; Rajarshi Banerjee; Narendra B. Dahotre
A high intensity continuous wave diode pumped ytterbium laser source was used to deposit Ca-P coatings on a Ti-6Al-4V biocompatible alloy in order to generate a physically textured surface, enhancing osseointegration. Scanning electron microscopy (SEM), scanning transmission electron microscopy (STEM) and energy dispersive spectroscopy (EDS) studies were coupled with X-ray and micro diffraction work to determine the structure, composition, and phases present in various zones of a sample prepared across the coating/substrate interaction zone. Three-dimensional thermal modeling was also carried out to determine the cooling rate and maximum temperature experienced by different regions of the substrate. Combining these results provide us with valuable insights regarding the thermo-physical as well as chemical interactions that take place across the coating-substrate interface.
Biofabrication | 2010
Sameer R. Paital; Zheng Cao; Wei He; Narendra B. Dahotre
Calcium phosphate (Ca-P) coating on the Ti-6Al-4V alloy enhances osteoblast adhesion and tissue formation at the bone implant interface. In light of this, in the current work a laser-based coating technique was used to synthesize two different micro-textured (100 microm and 200 microm spaced line patterns) Ca-P coatings on the Ti-6Al-4V alloy and its effect on wettability and osteoblast cell adhesion were systematically studied. X-ray diffraction (XRD) analysis of the coated samples indicated the presence of precursor material, Ca10(PO4)6(OH)2 (HA) and various other additional phases such as CaTiO3, Ca3(PO4)2, TiO2 (anatase) and TiO2 (rutile) owing to the reaction between the precursor (HA) and substrate (Ti-6Al-4V) during laser processing. Confocal laser scanning microscopy-based characterization of coated samples indicated that the samples processed at 100 microm line spacing demonstrated a reduced surface roughness and smaller texture parameter value as compared to the samples processed at 200 microm spacing. The surface energy and wettability of the 100 microm spaced samples measured using a static sessile drop technique demonstrated higher surface energy and increased hydrophilicity as compared to the control (untreated Ti-6Al-4V) and the samples processed at 200 microm spacing. The tendency of coated samples for mineralization through generation of an apatite-like phase during immersion in a simulated body fluid was indicative of their in vitro bioactive nature. In light of higher surface energy and increased hydrophilicity the in vitro biocompatibility of the samples with 100 microm line spacing was demonstrated through increased cell proliferation and cell adhesion of mouse MC3T3-E1 osteoblast-like cells.
Surface Review and Letters | 2012
Baoshuai Du; Sameer R. Paital; Narendra B. Dahotre
A pulsed Nd:YAG laser was used to modify the surface properties of Mg alloy (AZ31B) for wear application with Al-Si as precursor material. Highly refined microstructure consisting of Mg2Si, Mg, Al12Mg17 and Al2O3 was obtained. Phase constituent was correlated with thermodynamic calculation by employing Thermocalc™. The evolution of phase amount in the coatings was associated with the laser processing parameters. Due to the presence of highly refined microstructure and hard intermetallic reinforcements, substantial improvement of microhardness has been found in the coating region.
Materials Science & Engineering R-reports | 2009
Sameer R. Paital; Narendra B. Dahotre
Scripta Materialia | 2008
Baoshuai Du; Sameer R. Paital; Narendra B. Dahotre