Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Sami Rtimi is active.

Publication


Featured researches published by Sami Rtimi.


ACS Applied Materials & Interfaces | 2012

Innovative TiO2/Cu Nanosurfaces Inactivating Bacteria in the Minute Range under Low-Intensity Actinic Light

O. Baghriche; Sami Rtimi; Cesar Pulgarin; R. Sanjinés; J. Kiwi

The bacterial inactivation of E. coli by cotton TiO(2)/Cu DC-magnetron sputtered thin films was investigated in the dark and under low-intensity actinic light. The TiO(2)/Cu sputtered layers revealed to be sensitive to actinic light showing the spectral characteristics of Cu/CuO. This indicates that Cu does not substitute Ti(4+) in the crystal lattice. Under diffuse actinic light (4 mW/cm(2)), the hybrid composite TiO(2)/Cu sample lead to fast bacterial inactivation times <5 min. This study presents evidence for a direct relation between the film optical absorption obtained by diffuse reflectance spectroscopy (DRS) and the bacterial inactivation kinetics by the TiO(2)/Cu samples. The Cu-ions inactivating the bacteria were followed in solution by inductively plasma coupled spectroscopy (ICPS). The amounts of Cu-ions detected by ICPS provide the evidence for an oligodynamic antibacterial effect. The changes in the oxidation state of Cu during bacterial inactivation were followed by XPS. The E. coli cell viability was detected by standard coliform counting CFU methods. The TiO(2)/Cu thickness layer was determined by profilometry and the film microstructure by XPS, TEM, AFM, XRD, XRF and contact angle (CA). A mechanism of bacterial inactivation by TiO(2)/Cu samples is suggested in terms of interfacial charge transfer (IFCT) involving charge transfer between TiO(2) and Cu.


ACS Applied Materials & Interfaces | 2015

Preparation and Mechanism of Cu-Decorated TiO2–ZrO2 Films Showing Accelerated Bacterial Inactivation

Sami Rtimi; Cesar Pulgarin; R. Sanjinés; V. A. Nadtochenko; J.-C. Lavanchy; John Kiwi

Antibacterial robust, uniform TiO2-ZrO2 films on polyester (PES) under low intensity sunlight irradiation made up by equal amounts of TiO2 and ZrO2 exhibited a much higher bacterial inactivation kinetics compared to pure TiO2 or ZrO2. The TiO2-ZrO2 matrix was found to introduce a drastic increase in the Cu-dopant promoter enhancing bacterial inactivation compared to Cu sputtered in the same amount on PES. Furthermore, the bacterial inactivation was accelerated by a factor close to three, by Cu- on TiO2-ZrO2 at extremely low levels ∼0.01%. Evidence is presented by X-ray photoelectron spectroscopy for redox catalysis taking place during bacterial inactivation. The TiO2-ZrO2-Cu band gap is estimated and the film properties were fully characterized. Evidence is provided for the photogenerated radicals intervening in the bacterial inactivation. The photoinduced TiO2-ZrO2-Cu interfacial charge transfer is discussed in term of the electronic band positions of the binary oxide and the Cu TiO2 intragap state.


Colloids and Surfaces B: Biointerfaces | 2014

New evidence for TiO2 uniform surfaces leading to complete bacterial reduction in the dark: Critical issues

Jelena Nesic; Sami Rtimi; D. Laub; Goran Roglić; Cesar Pulgarin; John Kiwi

This study presents new evidence for the events leading to Escherichia coli reduction in the absence of light irradiation on TiO2-polyester (from now on TiO2-PES. By transmission electron microscopy (TEM) the diffusion of TiO2 NPs aggregates with the E. coli outer lipo-polyssacharide (LPS) layer is shown to be a prerequisite for the loss of bacterial cultivability. Within 30 min in the dark the TiO2 aggregates interact with E. coli cell wall leading within 120 min to the complete loss of bacterial cultivability on a TiO2-PES 5% TiO2 sample. The bacterial reduction was observed to increase with a higher TiO2 loading on the PES up to 5%. Bacterial disinfection on TiO2-PES in the dark was slower compared to the runs under low intensity simulated sunlight light irradiation. The interaction between the TiO2 aggregates and the E. coli cell wall is discussed in terms of the competition between the TiO2 units collapsing to form TiO2-aggregates at a physiologic pH-value followed by the electrostatic interaction with the bacteria surface. TiO2-PES samples were able to carry repetitive bacterial inactivation. This presents a potential for practical applications. X-ray photoelectron spectroscopy (XPS) evidence was found for the reduction of Ti4+ to Ti3+ contributing to redox interactions between TiO2-PES and the bacterial cell wall. Insight is provided into the mechanism of interaction between the E. coli cell wall and TiO2 NPs. The properties of the TiO2-PES surface like percentage atomic concentration, TiO2-loading, optical absorption, surface charge and crystallographic phases are reported in this study.


Journal of Hazardous Materials | 2013

Coupling of narrow and wide band-gap semiconductors on uniform films active in bacterial disinfection under low intensity visible light: Implications of the interfacial charge transfer (IFCT)

Sami Rtimi; R. Sanjinés; Cesar Pulgarin; A. Houas; J.-C. Lavanchy; J. Kiwi

This study reports the design, preparation, testing and surface characterization of uniform films deposited by sputtering Ag and Ta on non-heat resistant polyester to evaluate the Escherichia coli inactivation by TaON, TaN/Ag, Ag and TaON/Ag polyester. Co-sputtering for 120 s Ta and Ag in the presence of N₂ and O₂ led to the faster E. coli inactivation by a TaON/Ag sample within ∼40 min under visible light irradiation. The deconvolution of TaON/Ag peaks obtained by X-ray photoelectron spectroscopy (XPS) allowed the assignment of the Ta₂O₅ and Ag-species. The shifts observed for the XPS peaks have been assigned to AgO to Ag₂O and Ag(0), and are a function of the applied sputtering times. The mechanism of interfacial charge transfer (IFCT) from the Ag₂O conduction band (cb) to the lower laying Ta₂O₅ (cb) is discussed suggesting a reaction mechanism. The optical absorption of the TaON and TaON/Ag samples found by diffuse reflectance spectroscopy (DRS) correlated well with the kinetics of E. coli inactivation. The TaON/Ag sample microstructure was characterized by contact angle (CA) and by atomic force microscopy (AFM). Self-cleaning of the TaON/Ag polyester after each disinfection cycle enabled repetitive E. coli inactivation.


Interface Focus | 2014

Effect of surface pretreatment of TiO2 films on interfacial processes leading to bacterial inactivation in the dark and under light irradiation

Sami Rtimi; Jelena Nesic; Cesar Pulgarin; R. Sanjinés; Michaël Bensimon; John Kiwi

Evidence is presented for radio-frequency plasma pretreatment enhancing the amount and adhesion of TiO2 sputtered on polyester (PES) and on polyethylene (PE) films. Pretreatment is necessary to attain a suitable TiO2 loading leading to an acceptable Escherichia coli reduction kinetics in the dark or under light irradiation for PES–TiO2 and PE–TiO2 samples. The amount of TiO2 on the films was monitored by diffuse reflectance spectroscopy and X-ray fluorescence. X-ray electron spectroscopy shows the lack of accumulation of bacterial residues such as C, N and S during bacterial inactivation since they seem to be rapidly destroyed by TiO2 photocatalysis. Evidence was found for Ti4+/Ti3+ redox catalysis occurring on PES–TiO2 and PE–TiO2 during the bacterial inactivation process. On PE–TiO2 surfaces, Fourier transform infrared spectroscopy (ATR-FTIR) provides evidence for a systematic shift of the na(CH2) stretching vibrations preceding bacterial inactivation within 60 min. The discontinuous IR-peak shifts reflect the increase in the C–H inter-bond distance leading to bond scission. The mechanism leading to E. coli loss of viability on PES–TiO2 was investigated in the dark up to complete bacterial inactivation by monitoring the damage in the bacterial outer cell by transmission electron microscopy. After 30 min, the critical step during the E. coli inactivation commences for dark disinfection on 0.1–5% wt PES–TiO2 samples. The interactions between the TiO2 aggregates and the outer lipopolysaccharide cell wall involve electrostatic effects competing with the van der Waals forces.


RSC Advances | 2013

Innovative semi-transparent nanocomposite films presenting photo-switchable behavior and leading to a reduction of the risk of infection under sunlight

Sami Rtimi; Cesar Pulgarin; R. Sanjinés; J. Kiwi

Novel sputtered polyethylene–TiO2 (PE–TiO2) thin films induce fast bacterial inactivation with concomitant photo-switchable hydrophobic to hydrophilic transition under light. RF-plasma pretreatments allowed an increased TiO2 loading on PE, favorably affecting the photocatalyst performance. ATR-FTIR spectroscopy shows that the increase in the cell lipid-layer fluidity leads to cell wall scission/bacterial inactivation.


Journal of Hazardous Materials | 2017

Iron oxide-mediated semiconductor photocatalysis vs. heterogeneous photo-Fenton treatment of viruses in wastewater. Impact of the oxide particle size

Stefanos Giannakis; Siting Liu; Anna Carratalà; Sami Rtimi; Masoud Talebi Amiri; Michaël Bensimon; Cesar Pulgarin

The photo-Fenton process is recognized as a promising technique towards microorganism disinfection in wastewater, but its efficiency is hampered at near-neutral pH operating values. In this work, we overcome these obstacles by using the heterogeneous photo-Fenton process as the default disinfecting technique, targeting MS2 coliphage in wastewater. The use of low concentrations of iron oxides in wastewater without H2O2 (wüstite, maghemite, magnetite) has demonstrated limited semiconductor-mediated MS2 inactivation. Changing the operational pH and the size of the oxide particles indicated that the isoelectric point of the iron oxides and the active surface area are crucial in the success of the process, and the possible underlying mechanisms are investigated. Furthermore, the addition of low amounts of Fe-oxides (1mgL-1) and H2O2 in the system (1, 5 and 10mgL-1) greatly enhanced the inactivation process, leading to heterogeneous photo-Fenton processes on the surface of the magnetically separable oxides used. Additionally, photo-dissolution of iron in the bulk, lead to homogeneous photo-Fenton, further aided by the complexation by the dissolved organic matter in the solution. Finally, we assess the impact of the presence of the bacterial host and the difference caused by the different iron sources (salts, oxides) and the Fe-oxide size (normal, nano-sized).


Antimicrobial Agents and Chemotherapy | 2016

In Vitro and In Vivo Effectiveness of an Innovative Silver-Copper Nanoparticle Coating of Catheters to Prevent Methicillin-Resistant Staphylococcus aureus Infection

Myriam Koumba Sarah Ballo; Sami Rtimi; Cesar Pulgarin; Nancy B. Hopf; Aurélie Berthet; John Kiwi; Philippe Moreillon; José M. Entenza; Alain Bizzini

ABSTRACT In this study, silver/copper (Ag/Cu)-coated catheters were investigated for their efficacy in preventing methicillin-resistant Staphylococcus aureus (MRSA) infection in vitro and in vivo. Ag and Cu were sputtered (67/33% atomic ratio) on polyurethane catheters by direct-current magnetron sputtering. In vitro, Ag/Cu-coated and uncoated catheters were immersed in phosphate-buffered saline (PBS) or rat plasma and exposed to MRSA ATCC 43300 at 104 to 108 CFU/ml. In vivo, Ag/Cu-coated and uncoated catheters were placed in the jugular vein of rats. Directly after, MRSA (107 CFU/ml) was inoculated in the tail vein. Catheters were removed 48 h later and cultured. In vitro, Ag/Cu-coated catheters preincubated in PBS and exposed to 104 to 107 CFU/ml prevented the adherence of MRSA (0 to 12% colonization) compared to uncoated catheters (50 to 100% colonization; P < 0.005) and Ag/Cu-coated catheters retained their activity (0 to 20% colonization) when preincubated in rat plasma, whereas colonization of uncoated catheters increased (83 to 100%; P < 0.005). Ag/Cu-coating protection diminished with 108 CFU/ml in both PBS and plasma (50 to 100% colonization). In vivo, Ag/Cu-coated catheters reduced the incidence of catheter infection compared to uncoated catheters (57% versus 79%, respectively; P = 0.16) and bacteremia (31% versus 68%, respectively; P < 0.05). Scanning electron microscopy of explanted catheters suggests that the suboptimal activity of Ag/Cu catheters in vivo was due to the formation of a dense fibrin sheath over their surface. Ag/Cu-coated catheters thus may be able to prevent MRSA infections. Their activity might be improved by limiting plasma protein adsorption on their surfaces.


RSC Advances | 2015

Novel FeOx–polyethylene transparent films: synthesis and mechanism of surface regeneration

Sami Rtimi; Cesar Pulgarin; R. Sanjinés; J. Kiwi

The first evidence for the synthesis of a uniform, adhesive polyethylene–FeOx (PE–FeOx) surface leading efficiently to bacterial inactivation is addressed in this study. PE was loaded with 0.04–0.08% Fe wt/wt PE after RF-plasma pretreatment was required to increase the active sites/polarity and roughness to adhere FeOx on PE. The repetitive bacterial inactivation proceeded in a stable way for several cycles. The oxidative radicals leading to bacterial inactivation under aerobic/anaerobic conditions were investigated by the use of appropriate scavengers. By X-ray photoelectron spectroscopy (XPS) and diffuse reflection spectroscopy (DRS) the changes on the PE–FeOx oxidation states and spectroscopic features during bacterial inactivation were monitored. The regeneration of the initial Fe-oxidation state and consequently of the initial Fe-oxidation state in the PE–FeOx was possible and followed by DRS. Inductive plasma coupled mass spectrometry (ICP-MS) indicated that only sub-ppb levels of Fe were released from the PE–FeOx surface within the reaction time.


Colloids and Surfaces B: Biointerfaces | 2015

New evidence for hybrid acrylic/TiO2 films inducing bacterial inactivation under low intensity simulated sunlight

Audrey Bonnefond; Edurne González; José M. Asua; Jose R. Leiza; John Kiwi; Cesar Pulgarin; Sami Rtimi

This study addresses the preparation and characterization of hybrid films prepared from Titanium dioxide (TiO2) Pickering stabilized acrylic polymeric dispersion as well as their bacterial inactivation efficiency under sunlight irradiation. Complete bacterial inactivation under low intensity simulated solar light irradiation (55 mW/cm(2)) was observed within 240 min for the films containing 10 weight based on monomers (wbm) % of TiO2, whereas 360 min were needed for the films containing 20 wbm% of TiO2. The hybrid films showed repetitive Escherichia coli (E. coli) inactivation under light irradiation. TiO2 released from the films surfaces was measured by inductively coupled plasma mass spectrometry (IPC-MS), obtaining values of ∼ 0.5 and 1 ppb/cm(2) for the films containing 10 wbm% and 20 wbm% of TiO2, respectively, far below the allowed cytotoxicity level for TiO2 (200 ppb). Transmission electron microscopy (TEM) of the hybrid films showed that TiO2 nanoparticles (NPs) were located at the polymer particles surface forming a continuous inorganic network inside the film matrix. Atomic force microscopy (AFM) images showed differences in the TiO2 dispersion between the air-film and film-substrate interfaces. Films containing 10 wbm% of TiO2 had higher roughness (Rg) at both interfaces than the one containing 20 wbm% of TiO2 inducing an increase in the bacterial adhesion as well as the bacterial inactivation kinetics. The highly oxidative OH-radicals participating in the bacterial inactivation were determined by fluorescence.

Collaboration


Dive into the Sami Rtimi's collaboration.

Top Co-Authors

Avatar

Cesar Pulgarin

École Polytechnique Fédérale de Lausanne

View shared research outputs
Top Co-Authors

Avatar

John Kiwi

École Polytechnique Fédérale de Lausanne

View shared research outputs
Top Co-Authors

Avatar

R. Sanjinés

École Polytechnique Fédérale de Lausanne

View shared research outputs
Top Co-Authors

Avatar

J. Kiwi

École Polytechnique Fédérale de Lausanne

View shared research outputs
Top Co-Authors

Avatar

Stefanos Giannakis

École Polytechnique Fédérale de Lausanne

View shared research outputs
Top Co-Authors

Avatar

Michaël Bensimon

École Polytechnique Fédérale de Lausanne

View shared research outputs
Top Co-Authors

Avatar

O. Baghriche

École Polytechnique Fédérale de Lausanne

View shared research outputs
Top Co-Authors

Avatar

V. A. Nadtochenko

Semenov Institute of Chemical Physics

View shared research outputs
Top Co-Authors

Avatar

Aymen Amine Assadi

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge