Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Sami Sainio is active.

Publication


Featured researches published by Sami Sainio.


Molecular Neurobiology | 2015

Integrated Carbon Nanostructures for Detection of Neurotransmitters

Sami Sainio; Tommi Palomäki; Noora Tujunen; Vera Protopopova; Jessica E. Koehne; Krisztian Kordas; Jari Koskinen; M. Meyyappan; Tomi Laurila

Carbon-based materials, such as diamond-like carbon (DLC), carbon nanofibers (CNFs), and carbon nanotubes (CNTs), are inherently interesting for neurotransmitter detection due to their good biocompatibility, low cost and relatively simple synthesis. In this paper, we report on new carbon-hybrid materials, where either CNTs or CNFs are directly grown on top of tetrahedral amorphous carbon (ta-C). We show that these hybrid materials have electrochemical properties that not only combine the best characteristics of the individual “building blocks” but their synergy makes the electrode performance superior compared to conventional carbon based electrodes. By combining ta-C with CNTs, we were able to realize electrode materials that show wide and stable water window, almost reversible electron transfer properties and high sensitivity and selectivity for detecting dopamine in the presence of ascorbic acid. Furthermore, the sensitivity of ta-C + CNF hybrids towards dopamine as well as glutamate has been found excellent paving the road for actual in vivo measurements. The wide and stable water window of these sensors enables detection of other neurotransmitters besides DA as well as capability of withstanding higher potentials without suffering from oxygen and hydrogen evolution.


ACS Omega | 2017

Application-Specific Catalyst Layers: Pt-Containing Carbon Nanofibers for Hydrogen Peroxide Detection

Tomi Laurila; Sami Sainio; Hua Jiang; Noora Isoaho; Jessica E. Koehne; Jarkko Etula; Jari Koskinen; M. Meyyappan

Complete removal of metal catalyst particles from carbon nanofibers (CNFs) and other carbon nanostructures is extremely difficult, and the envisioned applications may be compromised by the left-over impurities. To circumvent these problems, one should use, wherever possible, such catalyst materials that are meant to remain in the structure and have some application-specific role, making any removal steps unnecessary. Thus, as a proof-of-concept, we present here a nanocarbon-based material platform for electrochemical hydrogen peroxide measurement utilizing a Pt catalyst layer to grow CNFs with intact Pt particles at the tips of the CNFs. Backed by careful scanning transmission electron microscopy analysis, we show that this material can be readily realized with the Pt catalyst layer thickness impacting the resulting structure and also present a growth model to explain the evolution of the different types of structures. In addition, we show by electrochemical analysis that the material exhibits characteristic features of Pt in cyclic voltammetry and it can detect very small amounts of hydrogen peroxide with very fast response times. Thus, the present sensor platform provides an interesting electrode material with potential for biomolecule detection and in fuel cells and batteries. In the wider range, we propose a new approach where the selection of catalytic particles used for carbon nanostructure growth is made so that (i) they do not need to be removed and (ii) they will have essential role in the final application.


Analytical Chemistry | 2018

Electrochemical Fouling of Dopamine and Recovery of Carbon Electrodes

Emilia Peltola; Sami Sainio; Katherine B. Holt; Tommi Palomäki; Jari Koskinen; Tomi Laurila

A significant problem with implantable sensors is electrode fouling, which has been proposed as the main reason for biosensor failures in vivo. Electrochemical fouling is typical for dopamine (DA) as its oxidation products are very reactive and the resulting polydopamine has a robust adhesion capability to virtually all types of surfaces. The degree of DA fouling of different carbon electrodes with different terminations was determined using cyclic voltammetry (CV) and scanning electrochemical microscopy (SECM) approach curves and imaging. The rate of electron transfer kinetics at the fouled electrode surface was determined from SECM approach curves, allowing a comparison of insulating film thickness for the different terminations. SECM imaging allowed the determination of different morphologies, such as continuous layers or islands, of insulating material. We show that heterogeneous modification of carbon electrodes with carboxyl-amine functionalities offers protection against formation of an insulating polydopamine layer, while retaining the ability to detect DA. The benefits of the heterogeneous termination are proposed to be due to the electrostatic repulsion between amino-functionalities and DA. Furthermore, we show that the conductivity of the surfaces as well as the response toward DA was recovered close to the original performance level after cleaning the surfaces for 10-20 cycles in H2SO4 on all materials but pyrolytic carbon (PyC). The recovery capacity of the PyC electrode was lower, possibly due to stronger adsorption of DA on the surface.


Biointerphases | 2016

Morphological and chemical changes of aerosolized E. coli treated with a dielectric barrier discharge

Jaione Romero-Mangado; Dennis Nordlund; Felipe Soberon; Graham Deane; Kevin Maughan; Sami Sainio; Gurusharan Singh; Stephen Daniels; Ian T. Saunders; David J. Loftus; M. Meyyappan; Jessica E. Koehne; Ram P. Gandhiraman

This study presents the morphological and chemical modification of the cell structure of aerosolized Escherichia coli treated with a dielectric barrier discharge (DBD). Exposure to DBD results in severe oxidation of the bacteria, leading to the formation of hydroxyl groups and carbonyl groups and a significant reduction in amine functionalities and phosphate groups. Near edge x-ray absorption fine structure (NEXAFS) measurements confirm the presence of additional oxide bonds upon DBD treatment, suggesting oxidation of the outer layer of the cell wall. Electron microscopy images show that the bacteria undergo physical distortion to varying degrees, resulting in deformation of the bacterial structure. The electromagnetic field around the DBD coil causes severe damage to the cell structure, possibly resulting in leakage of vital cellular materials. The oxidation and chemical modification of the bacterial components are evident from the Fourier transform infrared spectroscopy and NEXAFS results. The bacterial reculture experiments confirm inactivation of airborne E. coli upon treating with DBD.


RSC Advances | 2018

Pt-grown carbon nanofibers for detection of hydrogen peroxide

Noora Isoaho; Sami Sainio; Niklas Wester; Luis Botello; Leena Sisko Johansson; Emilia Peltola; Victor Climent; Juan M. Feliu; Jari Koskinen; Tomi Laurila

Removal of left-over catalyst particles from carbon nanomaterials is a significant scientific and technological problem. Here, we present the physical and electrochemical study of application-specific carbon nanofibers grown from Pt-catalyst layers. The use of Pt catalyst removes the requirement for any cleaning procedure as the remaining catalyst particles have a specific role in the end-application. Despite the relatively small amount of Pt in the samples (7.0 ± 0.2%), they show electrochemical features closely resembling those of polycrystalline Pt. In O2-containing environment, the material shows two separate linear ranges for hydrogen peroxide reduction: 1–100 μM and 100–1000 μM with sensitivities of 0.432 μA μM−1 cm−2 and 0.257 μA μM−1 cm−2, respectively, with a 0.21 μM limit of detection. In deaerated solution, there is only one linear range with sensitivity 0.244 μA μM−1 cm−2 and 0.22 μM limit of detection. We suggest that the high sensitivity between 1 μM and 100 μM in solutions where O2 is present is due to oxygen reduction reaction occurring on the CNFs producing a small additional cathodic contribution to the measured current. This has important implications when Pt-containing sensors are utilized to detect hydrogen peroxide reduction in biological, O2-containing environment.


Journal of Materials Chemistry B | 2017

SU-8 based pyrolytic carbon for the electrochemical detection of dopamine

Emilia Peltola; Joonas J. Heikkinen; Katariina Sovanto; Sami Sainio; Anja Aarva; Sami Franssila; Ville Jokinen; Tomi Laurila

Here we investigated the electrochemical properties and dopamine (DA) detection capability of SU-8 photoresist based pyrolytic carbon (PyC) as well as its biocompatibility with neural cells. This approach is compatible with microfabrication techniques which is crucial for device development. X-ray photoelectron spectroscopy shows that PyC consists 98.5% of carbon, while oxygen plasma treatment (PyC-O2) increases the amount of oxygen up to 27.1%. PyC showed nearly reversible (ΔEp 63 mV) electron transfer kinetics towards outer sphere redox probe (Ru(NH3)6 2+/3+), while the reaction on PyC-O2 was quasi-reversible (ΔEp > 75 mV). DA showed both diffusion and adsorption-defined reaction kinetics with fast electron transfer with the ΔEp values of 50 mV and 30 mV, for PyC and PyC-O2, respectively. The strong interaction between the hydroxyl groups on the surface and DA, as confirmed by simulations, facilitates the redox reactions of DA. DA showed a linear response in the measured physiologically relevant range (50 nM-1 μM) and sensitivities were 1.2 A M-1 cm-2 for PyC and 2.7 A M-1 cm-2 for PyC-O2. Plasma oxidation (PyC-O2) improved cell adhesion even more than poly-l-lysine (PLL) coating on PyC, but best adhesion was achieved on PLL coated PyC-O2. Glial cells, neuroblastoma cells and neural stem cells all showed similar behavior.


RSC Advances | 2018

Characterization and electrochemical properties of iron-doped tetrahedral amorphous carbon (ta-C) thin films

Jarkko Etula; Niklas Wester; Sami Sainio; Tomi Laurila; Jari Koskinen

Iron-doped tetrahedral amorphous carbon thin films (Fe/ta-C) were deposited with varying iron content using a pulsed filtered cathodic vacuum arc system (p-FCVA). The aim of this study was to understand effects of iron on both the physical and electrochemical properties of the otherwise inert sp3-rich ta-C matrix. As indicated by X-ray photoelectron spectroscopy (XPS), even ∼0.4 at% surface iron had a profound electrochemical impact on both the potential window of ta-C in H2SO4 and KOH, as well as pseudocapacitance. It also substantially enhanced the electron transport and re-enabled facile outer sphere redox reaction kinetics in comparison to un-doped ta-C, as measured with electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV) using outer-sphere probes Ru(NH3)6, IrCl6, and FcMeOH. These increases in surface iron loading were linked to increased surface oxygen content and iron oxides. Unlike few other metals, an iron content even up to 10 at% was not found to result in the formation of sp2-rich amorphous carbon films as investigated by Raman spectroscopy. Atomic force microscopy (AFM) and transmission electron microscopy (TEM) investigations found all films to be amorphous and ultrasmooth with Rq values always in the range of 0.1–0.2 nm. As even very small amounts of Fe were shown to dominate the electrochemistry of ta-C, implications of this study are very useful e.g. in carbon nanostructure synthesis, where irregular traces of iron can be readily incorporated into the final structures.


RSC Advances | 2018

Pt-grown carbon nanofibers for enzymatic glutamate biosensors and assessment of their biocompatibility

Noora Isoaho; Emilia Peltola; Sami Sainio; Jari Koskinen; Tomi Laurila

Application-specific carbon nanofibers grown from Pt-catalyst layers have been shown to be a promising material for biosensor development. Here we demonstrate immobilization of glutamate oxidase on them and their use for amperometric detection of glutamate at two different potentials. At −0.15 V vs. Ag/AgCl at concentrations higher than 100 μM the oxygen reduction reaction severely interferes with the enzymatic production of H2O2 and consequently affects the detection of glutamate. On the other hand, at 0.6 V vs. Ag/AgCl enzyme saturation starts to affect the measurement above a glutamate concentration of 100 μM. Moreover, we suggest here that glutamate itself might foul Pt surfaces to some degree, which should be taken into account when designing Pt-based sensors operating at high anodic potentials. Finally, the Pt-grown and Ni-grown carbon nanofibers were shown to be biocompatible. However, the cells on Pt-grown carbon nanofibers had different morphology and formation of filopodia compared to those on Ni-grown carbon nanofibers. The effect was expected to be caused rather by the different fiber dimensions between the samples than the catalyst metal itself. Further experiments are required to find the optimal dimensions of CNFs for biological purposes.


Biosensors and Bioelectronics | 2018

Unmodified and multi-walled carbon nanotube modified tetrahedral amorphous carbon (ta-C) films as in vivo sensor materials for sensitive and selective detection of dopamine

Tommi Palomäki; Emilia Peltola; Sami Sainio; Niklas Wester; Olli Pitkänen; Krisztian Kordas; Jari Koskinen; Tomi Laurila

Unmodified and multi-walled carbon nanotube (MWCNT) modified tetrahedral amorphous carbon (ta-C) films of 15 and 50 nm were investigated as potential in vivo sensor materials for the detection of dopamine (DA) in the presence of the main interferents, ascorbic acid (AA) and uric acid (UA). The MWCNTs were grown directly on ta-C by chemical vapor deposition (designated as ta-C+CNT) and were characterized with X-ray photoelectron spectroscopy, Raman spectroscopy, scanning and transmission electron microscopy. Electroanalytical sensitivity and selectivity were determined with cyclic voltammetry. Biocompatibility of the materials was assessed with cell cultures of mouse neural stem cells (mNSCs). The detection limits of DA for both ta-C and ta-C+CNT electrodes ranged from 40 to 85 nM, which are well within the required range for in vivo detection. The detection limits were lower for both ta-C and ta-C+CNT electrodes with 50 nm of ta-C compared to 15 nm. The ta-C electrodes showed a large dynamic linear range of 0.01-100 µM but could not resolve between the oxidation peaks of DA, AA and UA. Modification with MWCNTs, however, resulted in excellent selectivity and all three analytes could be detected simultaneously at physiologically relevant concentrations using cyclic voltammetry. Based on cell culture of mNSCs, both ta-C and ta-C+CNT exhibited good biocompatibility, demonstrating their potential as in vivo sensor materials for the detection of DA.


Diamond and Related Materials | 2014

New electrochemically improved tetrahedral amorphous carbon films for biological applications

Tomi Laurila; Vera Protopopova; Sneha Rhode; Sami Sainio; Tommi Palomäki; M. A. Moram; Juan M. Feliu; Jari Koskinen

Collaboration


Dive into the Sami Sainio's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge