Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Samir Kumar Khanal is active.

Publication


Featured researches published by Samir Kumar Khanal.


Bioresource Technology | 2010

Biomass-derived syngas fermentation into biofuels: Opportunities and challenges.

Pradeep Chaminda Munasinghe; Samir Kumar Khanal

The conversion of biomass-derived synthesis gas (or syngas in brief) into biofuels by microbial catalysts (such as Clostridium ljungdahlii, Clostridium autoethanogenum, Acetobacterium woodii, Clostridium carboxidivorans and Peptostreptococcus productus) has gained considerable attention as a promising alternative for biofuel production in the recent past. The utilization of the whole biomass, including lignin, irrespective of biomass quality, the elimination of complex pre-treatment steps and costly enzymes, a higher specificity of biocatalysts, an independence of the H(2):CO ratio for bioconversion, bioreactor operation at ambient conditions, and no issue of noble metal poisoning are among the major advantages of this process. Poor mass transfer properties of the gaseous substrates (mainly CO and H(2)) and low ethanol yield of biocatalysts are the biggest challenges preventing the commercialization of syngas fermentation technology. This paper critically reviews the existing literature in biomass-derived syngas fermentation into biofuels, specifically, different biocatalysts, factors affecting syngas fermentation, and mass transfer. The paper also outlines the major challenges of syngas fermentation, key performance index and technology road map, and discusses the further research needs.


Critical Reviews in Environmental Science and Technology | 2007

Ultrasound Applications in Wastewater Sludge Pretreatment: A Review

Samir Kumar Khanal; David Grewell; Shihwu Sung; J. (Hans) van Leeuwen

Municipal wastewater sludge, particularly waste activated sludge (WAS), is more difficult to digest than primary solids due to a rate-limiting cell lysis step. The cell wall and the membrane of prokaryotes are composed of complex organic materials such as peptidoglycan, teichoic acids, and complex polysaccharides, which are not readily biodegradable. Physical pretreatment, particularly ultrasonics, is emerging as a popular method for WAS disintegration. The exposure of the microbial cells to ultrasound energy ruptures the cell wall and membrane and releases the intracellular organics in the bulk solution, which enhances the overall digestibility. This review article summarizes the major findings of ultrasonic application in WAS disintegration, and elucidates the impacts of sonic treatment on both aerobic and anaerobic digestion. This review also touches on some basics of ultrasonics, different methods of quantifying ultrasonic efficacy, and some engineering aspects of ultrasonics as applied to biological sludge disintegration. The review aims to advance the understanding of ultrasound sludge disintegration and outlines the future research direction. There is general agreement that ultrasonic density is more important than sonication time for efficient sludge disintegration. Published studies showed as much as 40% improvement in solubilization of WAS following ultrasonic pretreatment. Based on kinetic models, ultrasonic disintegration was impacted in the order: sludge pH > sludge concentration > ultrasonic intensity > ultrasonic density. Both laboratory and full-scale studies showed that the integration of an ultrasonic system to the anaerobic digester improved the anaerobic digestibility significantly.


Biotechnology Progress | 2010

Syngas fermentation to biofuel: evaluation of carbon monoxide mass transfer coefficient (kLa) in different reactor configurations.

Pradeep Chaminda Munasinghe; Samir Kumar Khanal

Lignocellulosic biomass such as agri‐residues, agri‐processing by‐products, and energy crops do not compete with food and feed, and is considered to be the ideal renewable feedstocks for biofuel production. Gasification of biomass produces synthesis gas (syngas), a mixture primarily consisting of CO and H2. The produced syngas can be converted to ethanol by anaerobic microbial catalysts especially acetogenic bacteria such as various clostridia species.One of the major drawbacks associated with syngas fermentation is the mass transfer limitation of these sparingly soluble gases in the aqueous phase. One way of addressing this issue is the improvement in reactor design to achieve a higher volumetric mass transfer coefficient (kLa). In this study, different reactor configurations such as a column diffuser, a 20‐μm bulb diffuser, gas sparger, gas sparger with mechanical mixing, air‐lift reactor combined with a 20‐μm bulb diffuser, air‐lift reactor combined with a single gas entry point, and a submerged composite hollow fiber membrane (CHFM) module were employed to examine the kLa values. The kLa values reported in this study ranged from 0.4 to 91.08 h−1. The highest kLa of 91.08 h−1 was obtained in the air‐lift reactor combined with a 20‐μm bulb diffuser, whereas the reactor with the CHFM showed the lowest kLa of 0.4 h−1. By considering both the kLa value and the statistical significance of each configuration, the air‐lift reactor combined with a 20‐μm bulb diffuser was found to be the ideal reactor configuration for carbon monoxide mass transfer in an aqueous phase.


Environmental Science & Technology | 2012

Nitrous Oxide (N2O) Emission from Aquaculture: A Review

Zhen Hu; Jae Woo Lee; Kartik Chandran; Sungpyo Kim; Samir Kumar Khanal

Nitrous oxide (N(2)O) is an important greenhouse gas (GHG) which has a global warming potential 310 times that of carbon dioxide (CO(2)) over a hundred year lifespan. N(2)O is generated during microbial nitrification and denitrification, which are common in aquaculture systems. To date, few studies have been conducted to quantify N(2)O emission from aquaculture. Additionally, very little is known with respect to the microbial pathways through which N(2)O is formed in aquaculture systems. This review suggests that aquaculture can be an important anthropogenic source of N(2)O emission. The global N(2)O-N emission from aquaculture in 2009 is estimated to be 9.30 × 10(10) g, and will increase to 3.83 × 10(11)g which could account for 5.72% of anthropogenic N(2)O-N emission by 2030 if the aquaculture industry continues to increase at the present annual growth rate (about 7.10%). The possible mechanisms and various factors affecting N(2)O production are summarized, and two possible methods to minimize N(2)O emission, namely aquaponic and biofloc technology aquaculture, are also discussed. The paper concludes with future research directions.


Water Research | 2003

ORP-based oxygenation for sulfide control in anaerobic treatment of high-sulfate wastewater

Samir Kumar Khanal; Ju-Chang Huang

A series of chemostat studies were conducted at a constant influent total organic carbon of 3750 mg/L (equivalent chemical oxygen demand (COD) of 10,000 mg/L) but at different influent sulfates of 1000, 3000 and 5000 mg/L in order to investigate the feasibility of online sulfide toxicity control through periodic oxygenation to the recycled biogas stream. The oxygen dosing for sulfide oxidation was regulated by using oxidation-reduction potential (ORP) as a controlling parameter. During oxygenation at elevated ORPs of -230 and -180 mV (50 and 100 mV above natural ORP of -280 mV, respectively), the dissolved and gaseous sulfides were completely eliminated which resulted in a concomitant improvement in methane yield by 56.3% at 5000 mg/L influent sulfate. However, at influent sulfates of 1000 and 3000 mg/L, both methane generation rate and sulfate removal efficiency were dropped appreciably at elevated ORPs. Facultative heterotrophs were found to consume as high as 66.3% of the influent COD during oxygenation. For effective sulfide oxidation at lower sulfate levels, it was no longer required to raise the ORP by as much as 50 or 100 mV. The actual needed ORP increase depended on the influent sulfate. This study had proven that the ORP-controlled oxygenation was reliable for achieving consistent online sulfide control during anaerobic treatment of high-sulfate wastewater.


Bioresource Technology | 2010

Sequential saccharification of corn fiber and ethanol production by the brown rot fungus Gloeophyllum trabeum

Mary L. Rasmussen; Prachand Shrestha; Samir Kumar Khanal; Anthony L. Pometto; J. (Hans) van Leeuwen

Degradation of lignocellulosic biomass to sugars through a purely biological process is a key to sustainable biofuel production. Hydrolysis of the corn wet-milling co-product-corn fiber-to simple sugars by the brown rot fungus Gloeophyllum trabeum was studied in suspended-culture and solid-state fermentations. Suspended-culture experiments were not effective in producing harvestable sugars from the corn fiber. The fungus consumed sugars released by fungal extracellular enzymes. Solid-state fermentation demonstrated up to 40% fiber degradation within 9days. Enzyme activity assays on solid-state fermentation filtrates confirmed the involvement of starch- and cellulose-degrading enzymes. To reduce fungal consumption of sugars and to accelerate enzyme activity, 2- and 3-d solid-state fermentation biomasses (fiber and fungus) were submerged in buffer and incubated at 37 degrees C without shaking. This anaerobic incubation converted up to almost 11% of the corn fiber into harvestable reducing sugars. Sugars released by G. trabeum were fermented to a maximum yield of 3.3g ethanol/100g fiber. This is the first report, to our knowledge, of G. trabeum fermenting sugar to ethanol. The addition of Saccharomyces cerevisiae as a co-culture led to more rapid fermentation to a maximum yield of 4.0g ethanol/100g fiber. The findings demonstrate the potential for this simple fungal process, requiring no pretreatment of the corn fiber, to produce more ethanol by hydrolyzing and fermenting carbohydrates in this lignocellulosic co-product.


Journal of Agricultural and Food Chemistry | 2008

Solid-Substrate Fermentation of Corn Fiber by Phanerochaete chrysosporium and Subsequent Fermentation of Hydrolysate into Ethanol

Prachand Shrestha; Mary L. Rasmussen; Samir Kumar Khanal; Anthony L. Pometto; J. (Hans) van Leeuwen

The goal of this study was to develop a fungal process for ethanol production from corn fiber. Laboratory-scale solid-substrate fermentation was performed using the white-rot fungus Phanerochaete chrysosporium in 1 L polypropylene bottles as reactors via incubation at 37 degrees C for up to 3 days. Extracellular enzymes produced in situ by P. chrysosporium degraded lignin and enhanced saccharification of polysaccharides in corn fiber. The percentage biomass weight loss and Klason lignin reduction were 34 and 41%, respectively. Anaerobic incubation at 37 degrees C following 2 day incubation reduced the fungal sugar consumption and enhanced the in situ cellulolytic enzyme activities. Two days of aerobic solid-substrate fermentation of corn fiber with P. chrysosporium, followed by anaerobic static submerged-culture fermentation resulted in 1.7 g of ethanol/100 g of corn fiber in 6 days, whereas yeast ( Saccharomyces cerevisiae) cocultured with P. chrysosporium demonstrated enhanced ethanol production of 3 g of ethanol/100 g of corn fiber. Specific enzyme activity assays suggested starch and hemi/cellulose contribution of fermentable sugar.


Water Environment Research | 2006

Biohydrogen production in continuous-flow reactor using mixed microbial culture.

Samir Kumar Khanal; Wen-Hsing Chen; Ling Li; Shihwu Sung

The goal of the proposed project was to develop an anaerobic fermentation process that converts negative-value organic wastes into hydrogen-rich gas in a continuous-flow reactor under different operating conditions, such as hydraulic retention time (HRT), heat treatment, pH, and substrates. A series of batch tests were also conducted in parallel to the continuous study to evaluate the hydrogen conversion efficiency of two different organic substrates, namely sucrose and starch. A heat shock (at 90 degrees C for 15 minutes) was applied to the sludge in an external heating chamber known as a sludge activation chamber, as a method to impose a selection pressure to eliminate non-spore-forming, hydrogen-consuming bacteria and to activate spore germination. The experimental results showed that the heat activation of biomass enhanced hydrogen production by selecting for hydrogen-producing, spore-forming bacteria. The batch feeding at a shorter HRT of 20 hours (or higher organic loading rate) favored hydrogen production, whereas, at a longer HRT of 30 hours, methane was detected in the gas phase. The major organic acids of hydrogen fermentation were acetate, butyrate, and propionate. Up to 23.1% of influent chemical oxygen demand was consumed in biomass synthesis. Batch tests showed that the hydrogen-production potential of starch was lower than sucrose, and better conversion efficiency from starch was obtained at a lower pH of 4.5. However, addition of sucrose to starch improved the overall hydrogen-production potential and hydrogen-production rate. This study showed that sustainable biohydrogen production from carbohydrate-rich substrates is possible through heat activation of settled sludge.


Biotechnology and Bioengineering | 2008

Ultrasound Pretreatment of Cassava Chip Slurry to Enhance Sugar Release for Subsequent Ethanol Production

Saoharit Nitayavardhana; Sudip Kumar Rakshit; David Grewell; J. (Hans) van Leeuwen; Samir Kumar Khanal

The use of ultrasound pretreatment to enhance liquefaction and saccharification of cassava chips was investigated. Cassava chip slurry samples were subjected to sonication for 10–40 s at three power levels of low (2 W/mL), medium (5 W/mL), and high (8 W/mL). The samples were simultaneously exposed to enzymes to convert starch into glucose. The cassava particle size declined nearly 40‐fold following ultrasonic pretreatment at high power input. Scanning electron micrographs of both unsonicated (control) and sonicated samples showed disruption of fibrous material in cassava chips but did not affect the granular structure of starch. Reducing sugar release improved in direct proportion to the power input and sonication time. The reducing sugar increase was as much as 180% with respect to the control groups. The slurry samples with enzyme addition during sonication resulted in better reducing sugar release than the samples with enzyme addition after sonication. The heat generated during sonication below starch gelatinization temperature apparently had no effect on the reducing sugar release. The reducing sugar yield and energy efficiency of ultrasound pretreated samples increased with total solids (TS) contents. The highest reducing sugar yield of 22 g/100 g of sample and efficiency of 323% were obtained for cassava slurry with 25% TS at high power. The reducing sugar yield at the completion of reaction (R∞) were over twofold higher compared to the control groups. The integration of ultrasound into a cassava‐based ethanol plant may significantly improve the overall ethanol yield. Biotechnol. Bioeng. 2008;101: 487–496.


Bioresource Technology | 2010

Ultrasound improved ethanol fermentation from cassava chips in cassava-based ethanol plants.

Saoharit Nitayavardhana; Prachand Shrestha; Mary L. Rasmussen; Buddhi P. Lamsal; J. (Hans) van Leeuwen; Samir Kumar Khanal

The effects of ultrasound and heat pretreatments on ethanol yields from cassava chips were investigated. Cassava slurries were sonicated for 10 and 30 s at the amplitudes of 80, 160, and 320 microm(pp) (peak to peak amplitude in microm) corresponding to low, medium, and high power levels, respectively. The sonicated and non-sonicated (control) samples were then subjected to simultaneous liquefaction-saccharification and ethanol fermentation. Cassava starch-to-ethanol conversion efficiencies showed that higher ethanol yields were directly related to sonication times, but not to power levels. Significantly higher ethanol yields were observed only for sonicated samples at the high power level. The ethanol yield from the sonicated sample was 2.7-fold higher than yield from the control sample. Starch-to-ethanol conversion rates from sonicated cassava chips were also significantly higher; the fermentation time could be reduced by nearly 24 h for sonicated samples to achieve the same ethanol yield as control samples. Thus, ultrasound pretreatment enhanced both the overall ethanol yield and fermentation rate. When compared to heat-treated samples, the sonicated samples produced nearly 29% more ethanol yield. Combined heat and ultrasound treatment had no significant effect on overall ethanol yields from cassava chips. Ultrasound is also preferable to heat pretreatment because of lower energy requirements, as indicated by energy balances. Integration of ultrasound application in cassava-based ethanol plants can significantly improve ethanol yields and reduce the overall production costs.

Collaboration


Dive into the Samir Kumar Khanal's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ju-Chang Huang

Hong Kong University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Devin Takara

University of Hawaii at Manoa

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge