Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Samir Parekh is active.

Publication


Featured researches published by Samir Parekh.


Blood | 2010

Genomewide DNA methylation analysis reveals novel targets for drug development in mantle cell lymphoma

Violetta V. Leshchenko; Pei Yu Kuo; Rita Shaknovich; David T. Yang; Tobias Gellen; Adam M. Petrich; Yiting Yu; Yvonne Remache; Marc A. Weniger; Sarwish Rafiq; K. Stephen Suh; Andre Goy; Wyndham H. Wilson; Amit Verma; Ira Braunschweig; Natarajan Muthusamy; Brad S. Kahl; John C. Byrd; Adrian Wiestner; Ari Melnick; Samir Parekh

Mantle cell lymphoma (MCL) is a mostly incurable malignancy arising from naive B cells (NBCs) in the mantle zone of lymph nodes. We analyzed genomewide methylation in MCL patients with the HELP (HpaII tiny fragment Enrichment by Ligation-mediated PCR) assay and found significant aberrancy in promoter methylation patterns compared with normal NBCs. Using biologic and statistical criteria, we further identified 4 hypermethylated genes CDKN2B, MLF-1, PCDH8, and HOXD8 and 4 hypomethylated genes CD37, HDAC1, NOTCH1, and CDK5 when aberrant methylation was associated with inverse changes in mRNA levels. Immunohistochemical analysis of an independent cohort of MCL patient samples confirmed CD37 surface expression in 93% of patients, validating its selection as a target for MCL therapy. Treatment of MCL cell lines with a small modular immunopharmaceutical (CD37-SMIP) resulted in significant loss of viability in cell lines with intense surface CD37 expression. Treatment of MCL cell lines with the DNA methyltransferase inhibitor decitabine resulted in reversal of aberrant hypermethylation and synergized with the histone deacetylase inhibitor suberoylanilide hydroxamic acid in induction of the hypermethylated genes and anti-MCL cytotoxicity. Our data show prominent and aberrant promoter methylation in MCL and suggest that differentially methylated genes can be targeted for therapeutic benefit in MCL.


Blood | 2012

Stem and progenitor cells in myelodysplastic syndromes show aberrant stage-specific expansion and harbor genetic and epigenetic alterations

Britta Will; Li Zhou; Thomas O. Vogler; Susanna Ben-Neriah; Carolina Schinke; Roni Tamari; Yiting Yu; Tushar D. Bhagat; Sanchari Bhattacharyya; Laura Barreyro; Christoph Heuck; Yonkai Mo; Samir Parekh; Christine McMahon; Andrea Pellagatti; Jacqueline Boultwood; Cristina Montagna; Lewis B. Silverman; Jaroslaw P. Maciejewski; John M. Greally; B. Hilda Ye; Alan F. List; Christian Steidl; Ulrich Steidl; Amit Verma

Even though hematopoietic stem cell (HSC) dysfunction is presumed in myelodysplastic syndrome (MDS), the exact nature of quantitative and qualitative alterations is unknown. We conducted a study of phenotypic and molecular alterations in highly fractionated stem and progenitor populations in a variety of MDS subtypes. We observed an expansion of the phenotypically primitive long-term HSCs (lineage(-)/CD34(+)/CD38(-)/CD90(+)) in MDS, which was most pronounced in higher-risk cases. These MDS HSCs demonstrated dysplastic clonogenic activity. Examination of progenitors revealed that lower-risk MDS is characterized by expansion of phenotypic common myeloid progenitors, whereas higher-risk cases revealed expansion of granulocyte-monocyte progenitors. Genome-wide analysis of sorted MDS HSCs revealed widespread methylomic and transcriptomic alterations. STAT3 was an aberrantly hypomethylated and overexpressed target that was validated in an independent cohort and found to be functionally relevant in MDS HSCs. FISH analysis demonstrated that a very high percentage of MDS HSC (92% ± 4%) carry cytogenetic abnormalities. Longitudinal analysis in a patient treated with 5-azacytidine revealed that karyotypically abnormal HSCs persist even during complete morphologic remission and that expansion of clonotypic HSCs precedes clinical relapse. This study demonstrates that stem and progenitor cells in MDS are characterized by stage-specific expansions and contain epigenetic and genetic alterations.


Blood | 2012

Overexpression of IL-1 receptor accessory protein in stem and progenitor cells and outcome correlation in AML and MDS

Laura Barreyro; Britta Will; Boris Bartholdy; Li Zhou; Tihomira I. Todorova; Robert F. Stanley; Susana Ben-Neriah; Cristina Montagna; Samir Parekh; Andrea Pellagatti; Jacqueline Boultwood; Elisabeth Paietta; Rhett P. Ketterling; Larry D. Cripe; Hugo F. Fernandez; Peter L. Greenberg; Martin S. Tallman; Christian Steidl; Constantine S. Mitsiades; Amit Verma; Ulrich Steidl

Cellular and interpatient heterogeneity and the involvement of different stem and progenitor compartments in leukemogenesis are challenges for the identification of common pathways contributing to the initiation and maintenance of acute myeloid leukemia (AML). Here we used a strategy of parallel transcriptional analysis of phenotypic long-term hematopoietic stem cells (HSCs), short-term HSCs, and granulocyte-monocyte progenitors from individuals with high-risk (-7/7q-) AML and compared them with the corresponding cell populations from healthy controls. This analysis revealed dysregulated expression of 11 genes, including IL-1 receptor accessory protein (IL1RAP), in all leukemic stem and progenitor cell compartments. IL1RAP protein was found to be overexpressed on the surface of HSCs of AML patients, and marked cells with the -7/7q- anomaly. IL1RAP was also overexpressed on HSCs of patients with normal karyotype AML and high-risk myelodysplastic syndrome, suggesting a pervasive role in different disease subtypes. High IL1RAP expression was independently associated with poor overall survival in 3 independent cohorts of AML patients (P = 2.2 × 10(-7)). Knockdown of IL1RAP decreased clonogenicity and increased cell death of AML cells. Our study identified genes dysregulated in stem and progenitor cells in -7/7q- AML, and suggests that IL1RAP may be a promising therapeutic and prognostic target in AML and high-risk myelodysplastic syndrome.


Blood | 2009

Effect of the nonpeptide thrombopoietin receptor agonist Eltrombopag on bone marrow cells from patients with acute myeloid leukemia and myelodysplastic syndrome

Britta Will; Masahiro Kawahara; Julia P. Luciano; Ingmar Bruns; Samir Parekh; Connie L. Erickson-Miller; Manuel Aivado; Amit Verma; Ulrich Steidl

Thrombocytopenia is a frequent symptom and clinical challenge in patients with myelodysplastic syndrome (MDS) and acute myeloid leukemia (AML). Eltrombopag is a small molecule thrombopoietin receptor agonist that might be a new option to treat thrombocytopenia in these diseases, provided that it does not stimulate malignant hematopoiesis. In this work, we studied the effects of Eltrombopag on proliferation, apoptosis, differentiation, colony formation, and malignant self-renewal of bone marrow mononuclear cells of patients with AML and MDS. Malignant bone marrow mononuclear cells did not show increased proliferation, or increased clonogenic capacity at concentrations of Eltrombopag ranging from 0.1 to 30 microg/mL. On the contrary, we observed a moderate, statistically nonsignificant (P = .18), decrease of numbers of malignant cells (mean, 56%; SD, 28%). Eltrombopag neither led to increased 5-bromo-2-deoxyuridine incorporation, decreased apoptosis, an increase of malignant self-renewal, nor enhanced in vivo engraftment in xenotransplantations. Furthermore, we found that Eltrombopag was capable of increasing megakaryocytic differentiation and formation of normal megakaryocytic colonies in patients with AML and MDS. These results provide a preclinical rationale for further testing of Eltrombopag for treatment of thrombocytopenia in AML and MDS.


Blood | 2011

HDAC inhibitors and decitabine are highly synergistic and associated with unique gene-expression and epigenetic profiles in models of DLBCL.

Matko Kalac; Luigi Scotto; Enrica Marchi; Jennifer E Amengual; Venkatraman E. Seshan; Govind Bhagat; Netha Ulahannan; Violetta V. Leshchenko; Alexis Temkin; Samir Parekh; Benjamin Tycko; Owen A. O'Connor

Interactions between histone deacetylase inhibitors (HDACIs) and decitabine were investigated in models of diffuse large B-cell lymphoma (DLBCL). A number of cell lines representing both germinal center B-like and activated B-cell like DLBCL, patient-derived tumor cells and a murine xenograft model were used to study the effects of HDACIs and decitabine in this system. All explored HDACIs in combination with decitabine produced a synergistic effect in growth inhibition and induction of apoptosis in DLBCL cells. This effect was time dependent, mediated via caspase-3 activation, and resulted in increased levels of acetylated histones. Synergy in inducing apoptosis was confirmed in patient-derived primary tumor cells treated with panobinostat and decitabine. Xenografting experiments confirmed the in vitro activity and tolerability of the combination. We analyzed the molecular basis for this synergistic effect by evaluating gene-expression and methylation patterns using microarrays, with validation by bisulfite sequencing. These analyses revealed differentially expressed genes and networks identified by each of the single treatment conditions and by the combination therapy to be unique with few overlapping genes. Among the genes uniquely altered by the combination of panobinostat and decitabine were VHL, TCEB1, WT1, and DIRAS3.


British Journal of Haematology | 2011

A phase I study of a combination of anti-CD19 and anti-CD22 immunotoxins (Combotox) in adult patients with refractory B-lineage acute lymphoblastic leukaemia.

Srikanth Gajavelli; Farhad Ravandi; Yu Min Shen; Samir Parekh; Ira Braunchweig; Stefan K. Barta; Victor Ghetie; Ellen S. Vitetta; Amit Verma

Novel agents are needed for patients with refractory and relapsed acute lymphoblastic leukaemia (ALL). Combotox is a 1:1 mixture of two immunotoxins (ITs), prepared by coupling deglycosylated ricin A chain (dgRTA) to monoclonal antibodies directed against CD22 (RFB4‐dgRTA) and CD19 (HD37‐dgRTA). Pre‐clinical data demonstrated that Combotox was effective in killing both pre‐B‐ALL cell lines and cells from patients with pre‐B ALL. A clinical study of paediatric patients in which 3 of 17 patients with ALL experienced complete remission, supported the preclinical work and motivated this study. This study was a Phase I, dose‐escalation trial using Combotox in adults with refractory or relapsed B‐lineage‐ALL. A cycle consisted of three doses, with one dose given every other day. Dose levels were 3, 5, 6, 7 and 8 mg/m2 per dose. Seventeen patients, aged 19–72 years, were enrolled in this multi‐institution study. The maximum tolerated dose was 7 mg/m2/dose (21 mg/m2/cycle) and vascular leak syndrome was the dose‐limiting toxicity. Two patients developed reversible grade 3 elevations in liver function tests. One patient achieved partial remission and proceeded to allogeneic stem cell transplantation. All patients with peripheral blasts experienced decreased blast counts following the administration of Combotox. Thus, Combotox can be safely administered to adults with refractory leukaemia.


Blood | 2015

Efficacy of transfusion with granulocytes from G-CSF/dexamethasone–treated donors in neutropenic patients with infection

Thomas H. Price; Michael Boeckh; Ryan W. Harrison; Jeffrey McCullough; Paul M. Ness; Ronald G. Strauss; W. Garrett Nichols; Taye H. Hamza; Melissa M. Cushing; Karen E. King; Jo Anne H. Young; Eliot C. Williams; Janice G. McFarland; Jennifer Holter Chakrabarty; Steven R. Sloan; David Friedman; Samir Parekh; Bruce S. Sachais; Joseph E. Kiss; Susan F. Assmann

High-dose granulocyte transfusion therapy has been available for 20 years, yet its clinical efficacy has never been conclusively demonstrated. We report here the results of RING (Resolving Infection in Neutropenia with Granulocytes), a multicenter randomized controlled trial designed to address this question. Eligible subjects were those with neutropenia (absolute neutrophil count <500/μL) and proven/probable/presumed infection. Subjects were randomized to receive either (1) standard antimicrobial therapy or (2) standard antimicrobial therapy plus daily granulocyte transfusions from donors stimulated with granulocyte colony-stimulating factor (G-CSF) and dexamethasone. The primary end point was a composite of survival plus microbial response, at 42 days after randomization. Microbial response was determined by a blinded adjudication panel. Fifty-six subjects were randomized to the granulocyte arm and 58 to the control arm. Transfused subjects received a median of 5 transfusions. Mean transfusion dose was 54.9 × 10(9) granulocytes. Overall success rates were 42% and 43% for the granulocyte and control groups, respectively (P > .99), and 49% and 41%, respectively, for subjects who received their assigned treatments (P = .64). Success rates for granulocyte and control arms did not differ within any infection type. In a post hoc analysis, subjects who received an average dose per transfusion of ≥0.6 × 10(9) granulocytes per kilogram tended to have better outcomes than those receiving a lower dose. In conclusion, there was no overall effect of granulocyte transfusion on the primary outcome, but because enrollment was half that planned, power to detect a true beneficial effect was low. RING was registered at www.clinicaltrials.gov as #NCT00627393.


Journal of Immunology | 2013

Myeloma Is Characterized by Stage-Specific Alterations in DNA Methylation That Occur Early during Myelomagenesis

Christoph Heuck; Jayesh Mehta; Tushar D. Bhagat; Krishna Gundabolu; Yiting Yu; Shahper N. Khan; Grigoris Chrysofakis; Carolina Schinke; Joseph Tariman; Eric Vickrey; Natalie Pulliam; Sangeeta Nischal; Li Zhou; Sanchari Bhattacharyya; Richard Meagher; Caroline Hu; Shahina Maqbool; Masako Suzuki; Samir Parekh; Frederic J. Reu; Ulrich Steidl; John M. Greally; Amit Verma; Seema Singhal

Epigenetic changes play important roles in carcinogenesis and influence initial steps in neoplastic transformation by altering genome stability and regulating gene expression. To characterize epigenomic changes during the transformation of normal plasma cells to myeloma, we modified the HpaII tiny fragment enrichment by ligation–mediated PCR assay to work with small numbers of purified primary marrow plasma cells. The nano-HpaII tiny fragment enrichment by ligation–mediated PCR assay was used to analyze the methylome of CD138+ cells from 56 subjects representing premalignant (monoclonal gammopathy of uncertain significance), early, and advanced stages of myeloma, as well as healthy controls. Plasma cells from premalignant and early stages of myeloma were characterized by striking, widespread hypomethylation. Gene-specific hypermethylation was seen to occur in the advanced stages, and cell lines representative of relapsed cases were found to be sensitive to decitabine. Aberrant demethylation in monoclonal gammopathy of uncertain significance occurred primarily in CpG islands, whereas differentially methylated loci in cases of myeloma occurred predominantly outside of CpG islands and affected distinct sets of gene pathways, demonstrating qualitative epigenetic differences between premalignant and malignant stages. Examination of the methylation machinery revealed that the methyltransferase, DNMT3A, was aberrantly hypermethylated and underexpressed, but not mutated in myeloma. DNMT3A underexpression was also associated with adverse overall survival in a large cohort of patients, providing insights into genesis of hypomethylation in myeloma. These results demonstrate widespread, stage-specific epigenetic changes during myelomagenesis and suggest that early demethylation can be a potential contributor to genome instability seen in myeloma. We also identify DNMT3A expression as a novel prognostic biomarker and suggest that relapsed cases can be therapeutically targeted by hypomethylating agents.


Nucleic Acids Research | 2013

Genome-wide hydroxymethylation tested using the HELP-GT assay shows redistribution in cancer

Sanchari Bhattacharyya; Yiting Yu; Masako Suzuki; Nathaniel R. Campbell; Jozef Mazdo; Aparna Vasanthakumar; Tushar D. Bhagat; Sangeeta Nischal; Maximilian Christopeit; Samir Parekh; Ulrich Steidl; Lucy A. Godley; Anirban Maitra; John M. Greally; Amit Verma

5-hydroxymethylcytosine (5-hmC) is a recently discovered epigenetic modification that is altered in cancers. Genome-wide assays for 5-hmC determination are needed as many of the techniques for 5-methylcytosine (5-mC) determination, including methyl-sensitive restriction digestion and bisulfite sequencing cannot distinguish between 5-mC and 5-hmC. Glycosylation of 5-hmC residues by beta-glucosyl transferase (β-GT) can make CCGG residues insensitive to digestion by MspI. Restriction digestion by HpaII, MspI or MspI after β-GT conversion, followed by adapter ligation, massive parallel sequencing and custom bioinformatic analysis allowed us determine distribution of 5-mC and 5-hmC at single base pair resolution at MspI restriction sites. The resulting HpaII tiny fragment Enrichment by Ligation-mediated PCR with β-GT (HELP-GT) assay identified 5-hmC loci that were validated at global level by liquid chromatography-mass spectrometry (LC-MS) and the locus-specific level by quantitative reverse transcriptase polymerase chain reaction of 5-hmC pull-down DNA. Hydroxymethylation at both promoter and intragenic locations correlated positively with gene expression. Analysis of pancreatic cancer samples revealed striking redistribution of 5-hmC sites in cancer cells and demonstrated enrichment of this modification at many oncogenic promoters such as GATA6. The HELP-GT assay allowed global determination of 5-hmC and 5-mC from low amounts of DNA and with the use of modest sequencing resources. Redistribution of 5-hmC seen in cancer highlights the importance of determination of this modification in conjugation with conventional methylome analysis.


Clinical Cancer Research | 2012

Akt Inhibitors MK-2206 and Nelfinavir Overcome mTOR Inhibitor Resistance in Diffuse Large B-cell Lymphoma

Adam M. Petrich; Violetta V. Leshchenko; Pei Yu Kuo; Bing Xia; Venu K. Thirukonda; Netha Ulahannan; Shanisha Gordon; Melissa Fazzari; B. Hilda Ye; Joseph A. Sparano; Samir Parekh

Purpose: The mTOR pathway is constitutively activated in diffuse large B-cell lymphoma (DLBCL). mTOR inhibitors have activity in DLBCL, although response rates remain low. We evaluated DLBCL cell lines with differential resistance to the mTOR inhibitor rapamycin: (i) to identify gene expression profile(s) (GEP) associated with resistance to rapamycin, (ii) to understand mechanisms of rapamycin resistance, and (iii) to identify compounds likely to synergize with mTOR inhibitor. Experimental Design: We sought to identify a GEP of mTOR inhibitor resistance by stratification of eight DLBCL cell lines with respect to response to rapamycin. Then, using pathway analysis and connectivity mapping, we sought targets likely accounting for this resistance and compounds likely to overcome it. We then evaluated two compounds thus identified for their potential to synergize with rapamycin in DLBCL and confirmed mechanisms of activity with standard immunoassays. Results: We identified a GEP capable of reliably distinguishing rapamycin-resistant from rapamycin-sensitive DLBCL cell lines. Pathway analysis identified Akt as central to the differentially expressed gene network. Connectivity mapping identified compounds targeting Akt as having a high likelihood of reversing the GEP associated with mTOR inhibitor resistance. Nelfinavir and MK-2206, chosen for their Akt-inhibitory properties, yielded synergistic inhibition of cell viability in combination with rapamycin in DLBCL cell lines, and potently inhibited phosphorylation of Akt and downstream targets of activated mTOR. Conclusions: GEP identifies DLBCL subsets resistant to mTOR inhibitor therapy. Combined targeting of mTOR and Akt suppresses activation of key components of the Akt/mTOR pathway and results in synergistic cytotoxicity. These findings are readily adaptable to clinical trials. Clin Cancer Res; 18(9); 2534–44. ©2012 AACR.

Collaboration


Dive into the Samir Parekh's collaboration.

Top Co-Authors

Avatar

Violetta V. Leshchenko

Icahn School of Medicine at Mount Sinai

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ajai Chari

Icahn School of Medicine at Mount Sinai

View shared research outputs
Top Co-Authors

Avatar

Pei-Yu Kuo

Albert Einstein College of Medicine

View shared research outputs
Top Co-Authors

Avatar

Hearn Jay Cho

Icahn School of Medicine at Mount Sinai

View shared research outputs
Top Co-Authors

Avatar

Deepak Perumal

Icahn School of Medicine at Mount Sinai

View shared research outputs
Top Co-Authors

Avatar

Amit Verma

Albert Einstein College of Medicine

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Wyndham H. Wilson

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Alessandro Laganà

Icahn School of Medicine at Mount Sinai

View shared research outputs
Researchain Logo
Decentralizing Knowledge