Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Samira Farsinezhad is active.

Publication


Featured researches published by Samira Farsinezhad.


Nano Research | 2016

Enhanced CH4 yield by photocatalytic CO2 reduction using TiO2 nanotube arrays grafted with Au, Ru, and ZnPd nanoparticles

Piyush Kar; Samira Farsinezhad; Najia Mahdi; Yun Zhang; Uchenna Obuekwe; Himani Sharma; Jing Shen; Natalia Semagina; Karthik Shankar

Metal nanoparticle (NP) co-catalysts on metal oxide semiconductor supports are attracting attention as photocatalysts for a variety of chemical reactions. Related efforts seek to make and use Pt-free catalysts. In this regard, we report here enhanced CH4 formation rates of 25 and 60 μmol·g–1·h–1 by photocatalytic CO2 reduction using hitherto unused ZnPd NPs as well as Au and Ru NPs. The NPs are formed by colloidal synthesis and grafted onto short n-type anatase TiO2 nanotube arrays (TNAs), grown anodically on transparent glass substrates. The interfacial electric fields in the NP-grafted TiO2 nanotubes were probed by ultraviolet photoelectron spectroscopy (UPS). Au NP-grafted TiO2 nanotubes (Au-TNAs) showed no band bending, but a depletion region was detected in Ru NP-grafted TNAs (Ru-TNAs) and an accumulation layer was observed in ZnPd NP-grafted TNAs (ZnPd-TNAs). Temperature programmed desorption (TPD) experiments showed significantly greater CO2 adsorption on NP-grafted TNAs. TNAs with grafted NPs exhibit broader and more intense UV–visible absorption bands than bare TNAs. We found that CO2 photoreduction by nanoparticle-grafted TNAs was driven not only by ultraviolet photons with energies greater than the TiO2 band gap, but also by blue photons close to and below the anatase band edge. The enhanced rate of CO2 reduction is attributed to superior use of blue photons in the solar spectrum, excellent reactant adsorption, efficient charge transfer to adsorbates, and low recombination losses.


IEEE Microwave and Wireless Components Letters | 2015

Liquid Sensing Using Active Feedback Assisted Planar Microwave Resonator

Mohammad Hossein Zarifi; Samira Farsinezhad; Karthik Shankar; Mojgan Daneshmand

A novel electromagnetic sensor operating at microwave frequencies with quality factor of 22,000 at 1.4 GHz for real-time sensing of fluid properties is presented. The core of the sensor has a planar microstrip resonator, which is enhanced using an active feedback loop. The resonance frequency and quality factor of the sensor show clear differentiation between analytes composed of common solvents. To evaluate the sensor for water based concentration detection, we have demonstrated that KOH dilutions as low as 0.1 mM are detectable. The proposed sensor has advantages of inexpensiveness and high resolution as well as capability for miniaturization and CMOS compatibility.


RSC Advances | 2014

Amphiphobic surfaces from functionalized TiO2 nanotube arrays

Samira Farsinezhad; Prashant R. Waghmare; Benjamin D. Wiltshire; Himani Sharma; Saeid Amiri; Sushanta K. Mitra; Karthik Shankar

Vertically-oriented, self-organized TiO2 nanotube arrays (TNAs) are a highly ordered n-type semiconducting nanoarchitecture with a wide range of potential applications. We generated low energy surfaces repellent to a broad spectrum of liquids by functionalizing TNAs using monolayers of two different fluorinated hydrocarbon molecules: perfluorononanoic acid (PFNA) and 1H, 1H′, 2H, 2H′-perfluorodecyl phosphonic acid (PFDPA). Nanotubes of two different outer diameters (50 nm and 130 nm) were studied and their wetting behavior analyzed in liquids belonging to different solvent classes to infer the nature of the wetting states. We show that the wetting behavior of perfluorinated monolayer-functionalized TNAs in polar liquids is explained by fakir or Cassie-states whilst the wetting behavior of bare nanotubes in every liquid is explained by Wenzel-type states. On the other hand, a transition between the Cassie and Wenzel states due to closed pores in the TNA architecture dictates the wetting behavior of functionalized TNAs in apolar liquids. The wetting behavior of functionalized TNAs is understood considering the synergistic effect of geometric and chemical surface modification. PFDPA-functionalized TNAs were found to be resilient to 24 hours of exposure to water and ethylene glycol at a static fluid pressure of 0.105 MPa, and are one step closer towards the realization of a mechanically robust omniphobic surface. At the same time, an understanding of wetting behavior will be useful in the design and optimization of a wide range of interface-sensitive devices such as metal oxide nanotube/nanopore array based sensors, implants, flow-through membranes, photocatalysts and heterojunction solar cells.


RSC Advances | 2015

Effect of sol stabilizer on the structure and electronic properties of solution-processed ZnO thin films

Ahmad Hossein Adl; Piyush Kar; Samira Farsinezhad; Himani Sharma; Karthik Shankar

ZnO is an increasingly important wide bandgap semiconductor for optoelectronic applications. Solution processing provides a facile and inexpensive method to form ZnO thin films with high throughput. The sol stabilizer used in the solution processing of ZnO functions variously as a sol homogenizer, chelating agent, wettability improver and capping agent. In spite of its obvious importance in influencing ZnO film properties, a restricted set of short chain alkaline sol stabilizers have been used in prior reports. We examined the effect of six different sol stabilizers, including acidic and longer chain species, along with a recipe without any stabilizer, on the grain size, crystallographic texture, and resistivity of solution processed ZnO films on thermal oxide-coated silicon substrates, and found large variations in the structural and electrical properties as a consequence of the choice of sol stabilizer. We found that ZnO films formed using oleic acid as the sol stabilizer possessed a strong (002) preferred orientation with a Lotgering factor as high as 0.86. The key insight we obtained is that the sol stabilizer strongly influences the film surface area and activation energy barrier for inter-grain transport. We comprehensively studied the steady state and transient behavior of ZnO films deposited using different stabilizers and compared their lifetime and mobility-lifetime products. When exposed to illumination, the conductivity of the deposited films increased by several orders of magnitude. This is attributed to the trapping of the nonequilibrium holes by the surface adsorbed oxide species, which produces equivalent number of excess electrons in the conduction band. Impedance spectroscopy and C–V measurements were performed to calculate the doping of the ZnO thin films. ZnO thin film transistors were also fabricated and the effects of the sol stabilizer on the different parameters of the TFT like mobility and threshold voltage were investigated.


Nanotechnology | 2017

Optical anisotropy in vertically oriented TiO2 nanotube arrays

Yun Zhang; Samira Farsinezhad; Benjamin D. Wiltshire; Ryan Kisslinger; Piyush Kar; Karthik Shankar

Nanofabricated optically anisotropic uniaxial thin films with deep submicron feature sizes are emerging as potential platforms for low-loss all-dielectric metamaterials, and for Dyakonov surface wave-based subwavelength optical confinement and guiding at interfaces with isotropic media. In this context, we investigate the optical properties of one such uniaxial platform, namely self-organized titania nanotube arrays (TNTAs) grown by the bottom-up nanofabrication process of electrochemical anodization on silicon wafer substrates, and subsequently annealed at different temperatures, i.e. 500 °C and 750 °C. We performed detailed quantitative analysis of the structure of the TNTAs using x-ray diffraction and Raman spectroscopy, which revealed a measurable phonon confinement in TNTAs annealed at 500 °C. Variable angle spectroscopic ellipsometry was used to investigate the optical anisotropy in two kinds of TNTAs-those constituted by anatase-phase and those containing a mixture of anatase and rutile phases. Both kinds of TNTAs were found to have positive birefringence (Δn) exceeding 0.06 in the spectral region of interest while mixed phase TNTAs exhibited Δn as high as 0.15. The experimentally measured anisotropy in the refractive index of the TNTAs was compared with the predictions of two different effective medium approximations incorporating the uniaxial geometry. The measured value of Δn for TNTAs exceeded that of bulk anatase single crystals, indicating the potential of nanostructured dielectrics to outperform dielectric crystals of the same material with respect to the magnitude of the achievable directional refractive index contrast.


ACS Applied Materials & Interfaces | 2017

Reduced Ensemble Plasmon Line Widths and Enhanced Two-Photon Luminescence in Anodically Formed High Surface Area Au–TiO2 3D Nanocomposites

Samira Farsinezhad; Shyama Prasad Banerjee; Bharath Bangalore Rajeeva; Benjamin D. Wiltshire; Himani Sharma; Anton Sura; Arash Mohammadpour; Piyush Kar; R. Fedosejevs; Karthik Shankar

Localized surface plasmon resonances (LSPR) in TiO2 nanorod and nanotube arrays decorated by gold nanoparticles can be exploited to improve photocatalytic activity, enhance nonlinear optical coefficients, and increase light harvesting in solar cells. However, the LSPR typically has a low quality factor, and the resonance is often obscured by the Urbach tail of the TiO2 band gap absorption. Attempts to increase the LSPR extinction intensity by increasing the density of gold nanoparticles on the surface of the TiO2 nanostructures invariably produce peak broadening due to the effects of either agglomeration or polydispersity. We present a new class of hybrid nanostructures containing gold nanoparticles (NPs) partially embedded in nanoporous/nanotubular TiO2 by performing the anodization of cosputtered Ti-Au thin films containing a relatively high ratio of Au:Ti. Our method of anodizing thin film stacks containing alternate layers of Ti and TiAu results in very distinctive LSPR peaks with quality factors as high as 6.9 and ensemble line widths as small as 0.33 eV even in the presence of an Urbach tail. Unusual features in the anodization of such films are observed and explained, including oscillatory current transients and the observation of coherent heterointerfaces between the Au NPs and anatase TiO2. We further show that such a plasmonic NP-embedded nanotube structure dramatically outperforms a plasmonic NP-decorated anodic nanotube structure in terms of the extinction coefficient, and achieves a strongly enhanced two-photon fluorescence due to the high density of gold nanoparticles in the composite film and the plasmonic local field enhancement.


Nanotechnology | 2018

Core–shell titanium dioxide–titanium nitride nanotube arrays with near-infrared plasmon resonances

Samira Farsinezhad; Thariq Shanavas; Najia Mahdi; Abdelrahman M. Askar; Piyush Kar; Himani Sharma; Karthik Shankar

Titanium nitride (TiN) is a ceramic with high electrical conductivity which in nanoparticle form, exhibits localized surface plasmon resonances (LSPRs) in the visible region of the solar spectrum. The ceramic nature of TiN coupled with its dielectric loss factor being comparable to that of gold, render it attractive for CMOS polarizers, refractory plasmonics, surface-enhanced Raman scattering and a whole host of sensing applications. We report core-shell TiO2-TiN nanotube arrays exhibiting LSPR peaks in the range 775-830 nm achieved by a simple, solution-based, low cost, large area-compatible fabrication route that does not involve laser-writing or lithography. Self-organized, highly ordered TiO2 nanotube arrays were grown by electrochemical anodization of Ti thin films on fluorine-doped tin oxide-coated glass substrates and then conformally coated with a thin layer of TiN using atomic layer deposition. The effects of varying the TiN layer thickness and thermal annealing on the LSPR profiles were also investigated. Modeling the TiO2-TiN core-shell nanotube structure using two different approaches, one employing effective medium approximations coupled with Fresnel coefficients, resulted in calculated optical spectra that closely matched the experimentally measured spectra. Modeling provided the insight that the observed near-infrared resonance was not collective in nature, and was mainly attributable to the longitudinal resonance of annular nanotube-like TiN particles redshifted due to the presence of the higher permittivity TiO2 matrix. The resulting TiO2-TiN core-shell nanotube structures also function as visible light responsive photocatalysts, as evidenced by their photoelectrochemical water-splitting performance under light emitting diode illumination using 400, 430 and 500 nm photons.


Journal of Materials Chemistry C | 2016

Low residual donor concentration and enhanced charge transport in low-cost electrodeposited ZnO

Mourad Benlamri; Samira Farsinezhad; Douglas W. Barlage; Karthik Shankar

High unintentional n-type doping and poor charge transport are key limitations in solution processed ZnO thin films. In this context, we report ZnO films with a low residual donor concentration and high texture, synthesized by low-cost electrodeposition on copper. They possess an equilibrium free electron concentration of ∼2.8 × 1014 cm−3 and a minimum electron mobility of 80 cm2 V−1 s−1. The resulting Schottky diodes demonstrate rectification ratios of ∼106, ideality factors of ∼2, and low on-state resistance.


Journal of Micro-nanolithography Mems and Moems | 2015

Mapping stresses in high aspect ratio polysilicon electrical through-wafer interconnects

Himani Sharma; Joshua D. Krabbe; Samira Farsinezhad; Andy C. van Popta; Nick G. Wakefield; Glen A. Fitzpatrick; Karthik Shankar

Abstract. Electrical through-wafer interconnect technologies such as vertical through-silicon vias (TSVs) are essential in order to maximize performance, optimize usage of wafer real estate, and enable three-dimensional packaging in leading edge electronic and microelectromechanical systems (MEMS) products. Although copper TSVs have the advantage of low resistance, highly doped polysilicon TSVs offer designers a much larger range of processing options due to the compatibility of polysilicon with high temperatures and also with the full range of traditional CMOS processes. Large stresses are associated with both Cu and polysilicon TSVs, and their accurate measurement is critical for determining the keep-out zone (KOZ) of transistors and for optimizing downstream processes to maintain high yield. This report presents the fabrication and stress characterization of 400-μm deep, 20-Ω resistance, high aspect ratio (25:1) polysilicon TSVs fabricated by deep reactive ion etching (DRIE) followed by low-pressure chemical vapor deposition (LPCVD) of polysilicon with in-situ boron doping. Micro-Raman imaging of the wafer surface showed a maximum stress of 1.2 GPa occurring at the TSV edge and a KOZ of ∼9 to 11  μm. For polysilicon TSVs, the stress distribution in the TSVs far from the wafer surface(s) was not previously well-understood due to measurement limitations. Raman spectroscopy was able to overcome this limitation; a TSV cross section was examined and stresses as a function of both depth and width of the TSVs were collected and are analyzed herein. An 1100°C postanneal was found to reduce average stresses by 40%.


ASME 2014 International Mechanical Engineering Congress and Exposition | 2014

High Performance Zinc Oxide Thin Film Transistors Through Improved Material Processing and Device Design

Ahmad Hossein Adl; Samira Farsinezhad; Alex M. Ma; Douglas W. Barlage; Karthik Shankar

Solution processing (SP) is a cheap, simple and high-throughput method for the fabrication of ZnO thin film transistors (TFTs). Lack of enhancement mode operation, poor crystallinity, traps, and poor control of the carrier concentration are some of the disadvantages of this method. The high intrinsic electron concentration of SP-ZnO makes saturation of TFTs non-trivial. We report on Schottky barrier thin film transistors (SB-TFT). By biasing the source Schottky contact in reverse bias, a depletion region is formed around the source contact hence depleting the region from the free charge carriers which produces the saturation of the device. The effect of the Schottky contact is illustrated by comparing the operation of SB-TFTs with that of conventional TFTs.Copyright

Collaboration


Dive into the Samira Farsinezhad's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yun Zhang

University of Alberta

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge