Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Samira Mafi Moghaddam is active.

Publication


Featured researches published by Samira Mafi Moghaddam.


Nature Genetics | 2014

A reference genome for common bean and genome-wide analysis of dual domestications

Jeremy Schmutz; Phillip E. McClean; Sujan Mamidi; G Albert Wu; Steven B. Cannon; Jane Grimwood; Jerry Jenkins; Shengqiang Shu; Qijian Song; Carolina Chavarro; Mirayda Torres-Torres; Valérie Geffroy; Samira Mafi Moghaddam; Dongying Gao; Brian Abernathy; Kerrie Barry; Matthew W. Blair; Mark A. Brick; Mansi Chovatia; Paul Gepts; David Goodstein; Michael Gonzales; Uffe Hellsten; David L. Hyten; Gaofeng Jia; James D. Kelly; Dave Kudrna; Rian Lee; Manon M. S. Richard; Phillip N. Miklas

Common bean (Phaseolus vulgaris L.) is the most important grain legume for human consumption and has a role in sustainable agriculture owing to its ability to fix atmospheric nitrogen. We assembled 473 Mb of the 587-Mb genome and genetically anchored 98% of this sequence in 11 chromosome-scale pseudomolecules. We compared the genome for the common bean against the soybean genome to find changes in soybean resulting from polyploidy. Using resequencing of 60 wild individuals and 100 landraces from the genetically differentiated Mesoamerican and Andean gene pools, we confirmed 2 independent domestications from genetic pools that diverged before human colonization. Less than 10% of the 74 Mb of sequence putatively involved in domestication was shared by the two domestication events. We identified a set of genes linked with increased leaf and seed size and combined these results with quantitative trait locus data from Mesoamerican cultivars. Genes affected by domestication may be useful for genomics-enabled crop improvement.


The Plant Genome | 2011

Genome-Wide Association Analysis Identifies Candidate Genes Associated with Iron Deficiency Chlorosis in Soybean

Sujan Mamidi; Shireen Chikara; R. Jay Goos; David L. Hyten; Deepti Annam; Samira Mafi Moghaddam; Rian K. Lee; Perry B. Cregan; Phillip E. McClean

Iron deficiency chlorosis (IDC) is a significant yield‐limiting problem in several major soybean [Glycine max (L.) Merr.] production regions in the United States. Soybean plants display a variety of symptoms that range from a slight yellowing of the leaf to interveinal chlorosis, to stunted growth that reduces yield. The objective of this analysis was to employ single nucleotide polymorphism (SNP)‐based genome‐wide association mapping to uncover genomic regions associated with IDC tolerance. Two populations [2005 (n = 143) and 2006 (n = 141)] were evaluated in replicated, multilocation IDC trials. After controlling for population structure and individual relatedness, and selecting statistical models that minimized false positives, 42 and 88 loci, with minor allele frequency >10%, were significant in 2005 and 2006, respectively. The loci accounted for 74.5% of the phenotypic variation in IDC in2005 and 93.8% of the variation in 2006. Nine loci from seven genomic locations were significant in both years. These loci accounted for 43.7% of the variation in 2005 and 47.6% in 2006. A number of the loci discovered here mapped at or near previously discovered IDC quantitative trait loci (QTL). A total of 15 genes known to be involved in iron metabolism mapped in the vicinity (>500 kb) of significant markers in one or both populations.


Functional Plant Biology | 2011

Investigation of the domestication of common bean (Phaseolus vulgaris) using multilocus sequence data

Sujan Mamidi; Monica Rossi; Deepti Annam; Samira Mafi Moghaddam; Rian Lee; Roberto Papa; Phillip E. McClean

Multilocus sequence data collected from domesticated and related wild relatives provides a rich source of information on the effect of human selection on the diversity and adaptability of a species to complex environments. To evaluate the domestication history of common bean (Phaseolus vulgaris L.), multilocus sequence data from landraces representing the various races within the Middle American (MA) and Andean gene pools was evaluated. Across 13 loci, nucleotide diversity was similar between landraces and wild germplasm in both gene pools. The diversity data were evaluated using the approximate Bayesian computation approach to test multiple domestication models and estimate population demographic parameters. A model with a single domestication event coupled with bidirectional migration between wild and domesticated genotypes fitted the data better than models consisting of two or three domestication events in each genepool. The effective bottleneck population size was ~50% of the base population in each genepool. The bottleneck began ~8200 and ~8500 years before present and ended at ~6300 and ~7000 years before present in MA and Andean gene pools respectively. Linkage disequilibrium decayed to a greater extent in the MA genepool. Given the (1) geographical adaptation bottleneck in each wild gene pool, (2) a subsequent domestication bottleneck within each gene pool, (3) differentiation into gene-pool specific races and (4) variable extents of linkage disequilibrium, association mapping experiments for common bean would more appropriately be performed within each genepool.


Heredity | 2013

Demographic factors shaped diversity in the two gene pools of wild common bean Phaseolus vulgaris L.

Sujan Mamidi; Monica Rossi; Samira Mafi Moghaddam; Deepti Annam; Rian Lee; Roberto Papa; Phillip E. McClean

Wild common bean (Phaseolus vulgaris L.) is distributed throughout the Americas from Mexico to northern Argentina. Within this range, the species is divided into two gene pools (Andean and Middle American) along a latitudinal gradient. The diversity of 24 wild common bean genotypes from throughout the geographic range of the species was described by using sequence data from 13 loci. An isolation–migration model was evaluated using a coalescent analysis to estimate multiple demographic parameters. Using a Bayesian approach, Andean and Middle American subpopulations with high percentage of parentages were observed. Over all loci, the Middle American gene pool was more diverse than the Andean gene pool (πsil=0.0089 vs 0.0068). The two subpopulations were strongly genetically differentiated over all loci (Fst=0.29). It is estimated that the two current wild gene pools diverged from a common ancestor ∼111 000 years ago. Subsequently, each gene pool underwent a bottleneck immediately after divergence and lasted ∼40 000 years. The Middle American bottleneck population size was ∼46% of the ancestral population size, whereas the Andean was 26%. Continuous asymmetric gene flow was detected between the two gene pools with a larger number of migrants entering Middle American gene pool from the Andean gene pool. These results suggest that because of the complex population structure associated with the ancestral divergence, subsequent bottlenecks in each gene pool, gene pool-specific domestication and intense selection within each gene pool by breeders; association mapping would best be practised within each common bean gene pool.


Frontiers in Plant Science | 2014

Developing market class specific InDel markers from next generation sequence data in Phaseolus vulgaris L.

Samira Mafi Moghaddam; Qijian Song; Sujan Mamidi; Jeremy Schmutz; Rian Lee; Perry B. Cregan; Juan M. Osorno; Phillip E. McClean

Next generation sequence data provides valuable information and tools for genetic and genomic research and offers new insights useful for marker development. This data is useful for the design of accurate and user-friendly molecular tools. Common bean (Phaseolus vulgaris L.) is a diverse crop in which separate domestication events happened in each gene pool followed by race and market class diversification that has resulted in different morphological characteristics in each commercial market class. This has led to essentially independent breeding programs within each market class which in turn has resulted in limited within market class sequence variation. Sequence data from selected genotypes of five bean market classes (pinto, black, navy, and light and dark red kidney) were used to develop InDel-based markers specific to each market class. Design of the InDel markers was conducted through a combination of assembly, alignment and primer design software using 1.6× to 5.1× coverage of Illumina GAII sequence data for each of the selected genotypes. The procedure we developed for primer design is fast, accurate, less error prone, and higher throughput than when they are designed manually. All InDel markers are easy to run and score with no need for PCR optimization. A total of 2687 InDel markers distributed across the genome were developed. To highlight their usefulness, they were employed to construct a phylogenetic tree and a genetic map, showing that InDel markers are reliable, simple, and accurate.


BMC Genomics | 2014

Application of in silico bulked segregant analysis for rapid development of markers linked to Bean common mosaic virus resistance in common bean

Marco H Bello; Samira Mafi Moghaddam; Mark Massoudi; Phillip E. McClean; Perry B. Cregan; Phillip N. Miklas

BackgroundCommon bean was one of the first crops that benefited from the development and utilization of molecular marker-assisted selection (MAS) for major disease resistance genes. Efficiency of MAS for breeding common bean is still hampered, however, due to the dominance, linkage phase, and loose linkage of previously developed markers. Here we applied in silico bulked segregant analysis (BSA) to the BeanCAP diversity panel, composed of over 500 lines and genotyped with the BARCBEAN_3 6K SNP BeadChip, to develop codominant and tightly linked markers to the I gene controlling resistance to Bean common mosaic virus (BCMV).ResultsWe physically mapped the genomic region underlying the I gene. This locus, in the distal arm of chromosome Pv02, contains seven putative NBS-LRR-type disease resistance genes. Two contrasting bulks, containing BCMV host differentials and ten BeanCAP lines with known disease reaction to BCMV, were subjected to in silico BSA for targeting the I gene and flanking sequences. Two distinct haplotypes, containing a cluster of six single nucleotide polymorphisms (SNP), were associated with resistance or susceptibility to BCMV. One-hundred and twenty-two lines, including 115 of the BeanCAP panel, were screened for BCMV resistance in the greenhouse, and all of the resistant or susceptible plants displayed distinct SNP haplotypes as those found in the two bulks. The resistant/susceptible haplotypes were validated in 98 recombinant inbred lines segregating for BCMV resistance. The closest SNP (~25-32 kb) to the distal NBS-LRR gene model for the I gene locus was targeted for conversion to codominant KASP (Kompetitive Allele Specific PCR) and CAPS (Cleaved Amplified Polymorphic Sequence) markers. Both marker systems accurately predicted the disease reaction to BCMV conferred by the I gene in all screened lines of this study.ConclusionsWe demonstrated the utility of the in silico BSA approach using genetically diverse germplasm, genotyped with a high-density SNP chip array, to discover SNP variation at a specific targeted genomic region. In common bean, many disease resistance genes are mapped and their physical genomic position can now be determined, thus the application of this approach will facilitate further development of codominant and tightly linked markers for use in MAS.


The Plant Genome | 2016

Genome-Wide Association Study Identifies Candidate Loci Underlying Agronomic Traits in a Middle American Diversity Panel of Common Bean

Samira Mafi Moghaddam; Sujan Mamidi; Juan M. Osorno; Rian Lee; Mark A. Brick; James D. Kelly; Phillip N. Miklas; Carlos A. Urrea; Qijian Song; Perry B. Cregan; Jane Grimwood; Jeremy Schmutz; Phillip E. McClean

Common bean (Phaseolus vulgaris L.) breeding programs aim to improve both agronomic and seed characteristics traits. However, the genetic architecture of the many traits that affect common bean production are not completely understood. Genome‐wide association studies (GWAS) provide an experimental approach to identify genomic regions where important candidate genes are located. A panel of 280 modern bean genotypes from race Mesoamerica, referred to as the Middle American Diversity Panel (MDP), were grown in four US locations, and a GWAS using >150,000 single‐nucleotide polymorphisms (SNPs) (minor allele frequency [MAF] ≥ 5%) was conducted for six agronomic traits. The degree of inter‐ and intrachromosomal linkage disequilibrium (LD) was estimated after accounting for population structure and relatedness. The LD varied between chromosomes for the entire MDP and among race Mesoamerica and Durango–Jalisco genotypes within the panel. The LD patterns reflected the breeding history of common bean. Genome‐wide association studies led to the discovery of new and known genomic regions affecting the agronomic traits at the entire population, race, and location levels. We observed strong colocalized signals in a narrow genomic interval for three interrelated traits: growth habit, lodging, and canopy height. Overall, this study detected ∼30 candidate genes based on a priori and candidate gene search strategies centered on the 100‐kb region surrounding a significant SNP. These results provide a framework from which further research can begin to understand the actual genes controlling important agronomic production traits in common bean.


New Phytologist | 2018

White seed color in common bean (Phaseolus vulgaris) results from convergent evolution in the P (pigment) gene

Phillip E. McClean; Kirstin E. Bett; Robert Stonehouse; Rian Lee; Stéphanie Pflieger; Samira Mafi Moghaddam; Valérie Geffroy; Phil Miklas; Sujan Mamidi

The presence of seed color in common bean (Phaseolus vulgaris) requires the dominant-acting P (pigment) gene, and white seed is a recessive phenotype in all domesticated races of the species. P was classically associated with seed size, thus describing it as the first genetic marker for a quantitative trait. The molecular structure of P was characterized to understand the selection of white seeds during bean diversification and the relationship of P to seed weight. P was identified by homology searches, a genome-wide association study (GWAS) and gene remodeling, and confirmed by gene silencing. Allelic variation was assessed by a combination of resequencing and marker development, and the relationship between P and seed weight was assessed by a GWAS study. P is a member of clade B of subclass IIIf of plant basic helix-loop-helix (bHLH) proteins. Ten race-specific P alleles conditioned the white seed phenotype, and each causative mutation affected at least one bHLH domain required for color expression. GWAS analysis confirmed the classic association of P with seed weight. In common bean, white seeds are the result of convergent evolution and, among plant species, orthologous convergence on a single transcription factor gene was observed.


The Plant Genome | 2017

Genetic Architecture of Dietary Fiber and Oligosaccharide Content in a Middle American Panel of Edible Dry Bean

Samira Mafi Moghaddam; Mark A. Brick; Dimas Echeverria; Henry J. Thompson; Leslie A. Brick; Rian Lee; Sujan Mamidi; Phillip E. McClean

Colored bean seed showed the highest amount of IDF Over 20 years of breeding, higher levels of IDF and RFOs were achieved unintentionally Strong candidate genes were identified for dietary fiber traits especially RFO component


Crop Science | 2016

Targeted Analysis of Dry Bean Growth Habit: Interrelationship among Architectural, Phenological, and Yield Components

Ali Soltani; Marco H Bello; Eninka Mndolwa; Stephan Schroder; Samira Mafi Moghaddam; Juan M. Osorno; Phillip N. Miklas; Phillip E. McClean

Collaboration


Dive into the Samira Mafi Moghaddam's collaboration.

Top Co-Authors

Avatar

Phillip E. McClean

North Dakota State University

View shared research outputs
Top Co-Authors

Avatar

Sujan Mamidi

North Dakota State University

View shared research outputs
Top Co-Authors

Avatar

Rian Lee

North Dakota State University

View shared research outputs
Top Co-Authors

Avatar

Phillip N. Miklas

Agricultural Research Service

View shared research outputs
Top Co-Authors

Avatar

Juan M. Osorno

North Dakota State University

View shared research outputs
Top Co-Authors

Avatar

Mark A. Brick

Colorado State University

View shared research outputs
Top Co-Authors

Avatar

Perry B. Cregan

United States Department of Agriculture

View shared research outputs
Top Co-Authors

Avatar

Deepti Annam

North Dakota State University

View shared research outputs
Top Co-Authors

Avatar

James D. Kelly

Michigan State University

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge