Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Samira Saadoun is active.

Publication


Featured researches published by Samira Saadoun.


Nature | 2005

Impairment of angiogenesis and cell migration by targeted aquaporin-1 gene disruption

Samira Saadoun; Marios C. Papadopoulos; Mariko Hara-Chikuma; A. S. Verkman

Aquaporin-1 (AQP1) is a water channel protein expressed widely in vascular endothelia, where it increases cell membrane water permeability. The role of AQP1 in endothelial cell function is unknown. Here we show remarkably impaired tumour growth in AQP1-null mice after subcutaneous or intracranial tumour cell implantation, with reduced tumour vascularity and extensive necrosis. A new mechanism for the impaired angiogenesis was established from cell culture studies. Although adhesion and proliferation were similar in primary cultures of aortic endothelia from wild-type and from AQP1-null mice, cell migration was greatly impaired in AQP1-deficient cells, with abnormal vessel formation in vitro. Stable transfection of non-endothelial cells with AQP1 or with a structurally different water-selective transporter (AQP4) accelerated cell migration and wound healing in vitro. Motile AQP1-expressing cells had prominent membrane ruffles at the leading edge with polarization of AQP1 protein to lamellipodia, where rapid water fluxes occur. Our findings support a fundamental role of water channels in cell migration, which is central to diverse biological phenomena including angiogenesis, wound healing, tumour spread and organ regeneration.


Brain | 2010

Intra-cerebral injection of neuromyelitis optica immunoglobulin G and human complement produces neuromyelitis optica lesions in mice

Samira Saadoun; Patrick Waters; B. Anthony Bell; Angela Vincent; A. S. Verkman; Marios C. Papadopoulos

Neuromyelitis optica is an inflammatory demyelinating disease of the central nervous system associated with autoantibodies against the glial water channel protein aquaporin-4. It has recently been reported that immunoglobulin from neuromyelitis optica patients injected peripherally does not cause lesions in naive rats, but only when pre-existing central nervous system inflammation is present. Here, we investigated whether immunoglobulin G from aquaporin-4-autoantibody-positive neuromyelitis optica patients has the potential to damage the central nervous system either alone or in the presence of human complement. Immunoglobulin G from neuromyelitis optica patients did not activate mouse complement and was not pathogenic when injected into mouse brain. However, co-injection of immunoglobulin G from neuromyelitis optica patients with human complement produced neuromyelitis optica-like lesions in mice. Within 12 h of co-injecting immunoglobulin G from neuromyelitis optica patients and human complement, there was a striking loss of aquaporin-4 expression, glial cell oedema, myelin breakdown and axonal injury, but little intra-parenchymal inflammation. At 7 days, there was extensive inflammatory cell infiltration, perivascular deposition of activated complement components, extensive demyelination, loss of aquaporin-4 expression, loss of reactive astrocytes and neuronal cell death. In behavioural studies, mice injected with immunoglobulin G from neuromyelitis optica patients and human complement into the right hemisphere preferentially turned to the right at 7 days. No brain inflammation, demyelination or right-turning behaviour was seen in wild-type mice that received immunoglobulin G from non-neuromyelitis optica patients with human complement, or in aquaporin-4-null mice that received immunoglobulin G from neuromyelitis optica patients with human complement. We conclude that co-injection of immunoglobulin G from neuromyelitis optica patients with human complement reproduces the key histological features of neuromyelitis optica and that aquaporin-4 is necessary and sufficient for immunoglobulin G from neuromyelitis optica patients to exert its effect. In our mouse model, immunoglobulin G from neuromyelitis optica patients does not require pre-existing central nervous system inflammation to produce lesions.


Journal of Cell Science | 2005

Involvement of aquaporin-4 in astroglial cell migration and glial scar formation

Samira Saadoun; Marios C. Papadopoulos; Hiroyuki Watanabe; Donghong Yan; Geoffrey T. Manley; A. S. Verkman

Aquaporin-4, the major water-selective channel in astroglia throughout the central nervous system, facilitates water movement into and out of the brain. Here, we identify a novel role for aquaporin-4 in astroglial cell migration, as occurs during glial scar formation. Astroglia cultured from the neocortex of aquaporin-4-null mice had similar morphology, proliferation and adhesion, but markedly impaired migration determined by Transwell migration efficiency (18±2 vs 58±4% of cells migrated towards 10% serum in 8 hours; P<0.001) and wound healing rate (4.6 vs 7.0 μm/hour speed of wound edge; P<0.001) compared with wild-type mice. Transwell migration was similarly impaired (25±4% migrated cells) in wild-type astroglia after ∼90% reduction in aquaporin-4 protein expression by RNA inhibition. Aquaporin-4 was polarized to the leading edge of the plasma membrane in migrating wild-type astroglia, where rapid shape changes were seen by video microscopy. Astroglial cell migration was enhanced by a small extracellular osmotic gradient, suggesting that aquaporin-4 facilitates water influx across the leading edge of a migrating cell. In an in vivo model of reactive gliosis and astroglial cell migration produced by cortical stab injury, glial scar formation was remarkably impaired in aquaporin-4-null mice, with reduced migration of reactive astroglia towards the site of injury. Our findings provide evidence for the involvement of aquaporin-4 in astroglial cell migration, which occurs during glial scar formation in brain injury, stroke, tumor and focal abscess.


Neuroscience | 2004

Molecular mechanisms of brain tumor edema

Marios C. Papadopoulos; Samira Saadoun; Devin K. Binder; Geoffrey T. Manley; Sanjeev Krishna; A. S. Verkman

Despite their diverse histological types, most brain tumours cause brain oedema, which is a significant cause of patient morbidity and mortality. Brain tumour oedema occurs when plasma-like fluid enters the brain extracellular space through impaired capillary endothelial tight junctions in tumours. Under-expression of the tight junction proteins occludin, claudin-1 and claudin-5 are key molecular abnormalities responsible for the increased permeability of tumour endothelial tight junctions. Recent evidence suggests that the membrane water channel protein aquaporin-4 (AQP4) also plays a role in brain tumour oedema. AQP4-deficient mice show remarkably altered brain water balance after various insults, including brain tumour implantation. AQP4 expression is strongly upregulated around malignant human brain tumours in association with reduced extracellular volume, which may restrict the flow of extracellular fluid from the tumour bed into the brain parenchyma. Elimination of excess fluid leaking into brain parenchyma requires passage across three AQP4-rich barriers: a) the glia limitans externa, b) the glia limitans interna/ependyma, and c) the blood-brain barrier. Modulation of the expression and/or function of endothelial tight junction proteins and aquaporins may provide novel therapeutic options for reducing brain tumour oedema.


Annals of Neurology | 2012

Anti–Aquaporin‐4 monoclonal antibody blocker therapy for neuromyelitis optica

Lukmanee Tradtrantip; Hua Zhang; Samira Saadoun; Puay-Wah Phuan; Chiwah Lam; Marios C. Papadopoulos; Jeffrey L. Bennett; A. S. Verkman

Neuromyelitis optica (NMO) is an inflammatory demyelinating disease of the central nervous system. Circulating autoantibodies (NMO‐immunoglobulin [Ig]G) against astrocyte water channel aquaporin‐4 (AQP4) cause complement‐ and cell‐mediated astrocyte damage with consequent neuroinflammation and demyelination. Current NMO therapies, which have limited efficacy, include immunosuppression and plasma exchange. The objective of this study was to develop a potential new NMO therapy based on blocking of pathogenic NMO‐IgG binding to its target, AQP4.


Brain | 2008

Greatly improved neurological outcome after spinal cord compression injury in AQP4-deficient mice

Samira Saadoun; B. Anthony Bell; A. S. Verkman; Marios C. Papadopoulos

Aquaporin-4 (AQP4) is a water channel protein expressed in astrocytes throughout the CNS. In brain, AQP4 facilitates water balance and glial scar formation, which are important determinants of outcome after injury. Here, we provide evidence for AQP4-dependent spinal cord swelling following compression injury, resulting in remarkably improved outcome in AQP4-null mice. Two days after transient T6 spinal cord compression injury, wild-type mice developed more severe hindlimb weakness than AQP4-null mice, as assayed by the Basso open-field motor score, inclined plane method and footprint analysis. Basso motor scores were 1.3 +/- 0.5 (wild-type) versus 4.9 +/- 0.6 (AQP4-null) (SE, P < 0.001). Improved motor outcome in AQP4-null mice was independent of mouse strain and persisted at least 4 weeks. AQP4-null mice also had improved sensory outcome at 2 days, as assessed by spinal somatosensory evoked responses, with signal amplitudes approximately 10 microV (uninjured), 1.7 +/- 0.7 microV (wild-type) and 6.4 +/- 1.3 microV (AQP4-null) (P < 0.01). The improved motor and sensory indices in AQP4-null mice corresponded to remarkably less neuronal death and myelin vacuolation, as well as reduced spinal cord swelling and intraparenchymal spinal cord pressure measured at T6 at 2 days after injury. AQP4 immunoreactivity at the injury site was increased in grey and white matter at 48 h. Taken together, our findings indicate that AQP4 provides a major route for excess water entry into the injured spinal cord, which in turn causes spinal cord swelling and elevated spinal cord pressure. Our data suggest AQP4 inhibition or downregulation as novel early neuroprotective manoeuvres in spinal cord injury.


Neuroscience | 2010

Aquaporin-4 in brain and spinal cord oedema

Samira Saadoun; Marios C. Papadopoulos

Brain oedema is a major clinical problem produced by CNS diseases (e.g. stroke, brain tumour, brain abscess) and systemic diseases that secondarily affect the CNS (e.g. hyponatraemia, liver failure). The swollen brain is compressed against the surrounding dura and skull, which causes the intracranial pressure to rise, leading to brain ischaemia, herniation, and ultimately death. A water channel protein, aquaporin-4 (AQP4), is found in astrocyte foot processes (blood-brain border), the glia limitans (subarachnoid cerebrospinal fluid-brain border) and ependyma (ventricular cerebrospinal fluid-brain border). Experiments using mice lacking AQP4 or alpha syntrophin (which secondarily downregulate AQP4) showed that AQP4 facilitates oedema formation in diseases causing cytotoxic (cell swelling) oedema such as cerebral ischaemia, hyponatraemia and meningitis. In contrast, AQP4 facilitates oedema elimination in diseases causing vasogenic (vessel leak) oedema and therefore AQP4 deletion aggravates brain oedema produced by brain tumour and brain abscess. AQP4 is also important in spinal cord oedema. AQP4 deletion was associated with less cord oedema and improved outcome after compression spinal cord injury in mice. Here we consider the possible routes of oedema formation and elimination in the injured cord and speculate about the role of AQP4. Finally we discuss the role of AQP4 in neuromyelitis optica (NMO), an inflammatory demyelinating disease that produces oedema in the spinal cord and optic nerves. NMO patients have circulating AQP4 IgG autoantibody, which is now used for diagnosing NMO. We speculate how NMO-IgG might produce CNS inflammation, demyelination and oedema. Since AQP4 plays a key role in the pathogenesis of CNS oedema, we conclude that AQP4 inhibitors and activators may reduce CNS oedema in many diseases.


British Journal of Neurosurgery | 2001

Emerging molecular mechanisms of brain tumour oedema.

Marios C. Papadopoulos; Samira Saadoun; D. C. Davies; B. A. Bell

A common property of brain tumours is their ability to cause oedema in the surrounding brain. Oedema forms as a result of a leaky blood‘tumour barrier and persists when the brain fails to clear the excess fluid. It is a significant source of morbidity and mortality. The principal anatomical component of the blood‘brain barrier is the endothelial tight junction which opens in glioma microvessels. Multiple tight junction proteins have recently been identified, such as occludin, claudin, ZO-1, ZO-2 and ZO-3. We propose a model to explain tight junction opening in gliomas based on vascular endothelial growth factor secretion and loss of tight junction inducing factor production by tumour cells. The level of expression of the water channel aquaporin-4 in peritumoural astrocytes may determine the rate of oedema fluid clearance. The identification of the molecular mechanisms of brain tumour oedema may allow the design of novel anti-oedema medications.


Annals of Neurology | 2012

Neutrophil protease inhibition reduces neuromyelitis optica-immunoglobulin G-induced damage in mouse brain.

Samira Saadoun; Patrick Waters; Claire MacDonald; B. Anthony Bell; Angela Vincent; A. S. Verkman; Marios C. Papadopoulos

Neuromyelitis optica (NMO) is an inflammatory demyelinating disease of the central nervous system associated with pathogenic autoantibodies against the astrocyte water channel protein aquaporin‐4 (AQP4). The presence of neutrophils is a characteristic feature in NMO lesions in humans. Neutrophils are not generally found in multiple sclerosis lesions. We evaluated the role of neutrophils in a mouse NMO model.


Neuroscience | 2009

AQP4 gene deletion in mice does not alter blood-brain barrier integrity or brain morphology.

Samira Saadoun; M.J. Tait; A. Reza; D. Ceri Davies; B. A. Bell; A. S. Verkman; Marios C. Papadopoulos

The glial cell water channel aquaporin-4 (AQP4) plays an important role in brain edema, astrocyte migration, and neuronal excitability. Zhou et al. [Zhou J, Kong H, Hua X, Xiao M, Ding J, Hu G (2008) Altered blood-brain barrier integrity in adult aquaporin-4 knockout mice. Neuroreport 19:1-5] recently reported that AQP4 deletion significantly altered blood-brain barrier integrity and glial fibrillary acidic protein (GFAP) immunoreactivity in their AQP4 null mice. Here we describe a detailed characterization of baseline brain properties in our AQP4 null mice, including gross appearance, neuronal, astrocyte and oligodendrocyte characteristics, and blood-brain barrier integrity. Gross anatomical measurements included estimates of brain and ventricle size. Neurons, astrocytes and oligodendrocytes were assessed using the neuronal nuclear marker NeuN, the astrocyte marker GFAP, and the myelin stain Luxol Fast Blue. The blood-brain barrier was studied by electron microscopy and the horseradish peroxidase extravasation technique. There were no differences in brain and ventricle sizes between wild type and AQP4 null mice, nor were there differences in the cerebral cortical density of NeuN positive nuclei, perimicrovessel and glia limitans GFAP immunoreactivity, or the thickness and myelination of the corpus callosum. The ultrastructure of microvessels in the frontal cortex and caudate nucleus of wild type vs. AQP4 null mice was indistinguishable, with features including intact endothelial tight junctions, absence of perimicrovessel astrocyte foot process edema, and absence of horseradish peroxidase extravasation. In contrast to the report by Zhou et al. (2008), our data show that AQP4 deletion in mice does not produce major structural abnormalities in the brain.

Collaboration


Dive into the Samira Saadoun's collaboration.

Top Co-Authors

Avatar

A. S. Verkman

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jeffrey L. Bennett

University of Colorado Denver

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge