Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Samiran S. Gauri is active.

Publication


Featured researches published by Samiran S. Gauri.


ACS Applied Materials & Interfaces | 2014

Fabrication of superhydrophobic copper surface on various substrates for roll-off, self-cleaning, and water/oil separation.

Anup Kumar Sasmal; Chanchal Mondal; Arun Kumar Sinha; Samiran S. Gauri; Jaya Pal; Teresa Aditya; Mainak Ganguly; Satyahari Dey; Tarasankar Pal

Superhydrophobic surfaces prevent percolation of water droplets and thus render roll-off, self-cleaning, corrosion protection, etc., which find day-to-day and industrial applications. In this work, we developed a facile, cost-effective, and free-standing method for direct fabrication of copper nanoparticles to engender superhydrophobicity for various flat and irregular surfaces such as glass, transparency sheet (plastic), cotton wool, textile, and silicon substrates. The fabrication of as-prepared superhydrophobic surfaces was accomplished using a simple chemical reduction of copper acetate by hydrazine hydrate at room temperature. The surface morphological studies demonstrate that the as-prepared surfaces are rough and display superhydrophobic character on wetting due to generation of air pockets (The Cassie-Baxter state). Because of the low adhesion of water droplets on the as-prepared surfaces, the surfaces exhibited not only high water contact angle (164 ± 2°, 5 μL droplets) but also superb roll-off and self-cleaning properties. Superhydrophobic copper nanoparticle coated glass surface uniquely withstands water (10 min), mild alkali (5 min in saturated aqueous NaHCO3 of pH ≈ 9), acids (10 s in dilute HNO3, H2SO4 of pH ≈ 5) and thiol (10 s in neat 1-octanethiol) at room temperature (25-35 °C). Again as-prepared surface (cotton wool) was also found to be very effective for water-kerosene separation due to its superhydrophobic and oleophilic character. Additionally, the superhydrophobic copper nanoparticle (deposited on glass surface) was found to exhibit antibacterial activity against both Gram-negative and Gram-positive bacteria.


Bioresource Technology | 2009

Enhanced production and partial characterization of an extracellular polysaccharide from newly isolated Azotobacter sp. SSB81.

Samiran S. Gauri; Santi M. Mandal; Keshab Chandra Mondal; Satyahari Dey; Bikas R. Pati

A strain was selected by its highest extracellular polysaccharide (EPS) production ability compare to other isolates from the same rhizospheric soil. The selected strain was identified by 16S rDNA sequencing and designated as SSB81. Phylogenetic analysis of the gene sequence showed its close relatedness with Azotobacter vinelandii and Azotobacter salinestris. Maximum EPS (2.52 g l(-1)) was recovered when the basal medium was supplemented with glucose (2.0%), riboflavin (1 mg l(-1)) and casamino acid (0.2%). The EPS showed a stable viscosity level at acidic pH (3.0-6.5) and the pyrolysis temperature was found to be at 116.73 degrees C with an enthalpy (DeltaH) of 1330.72 J g(-1). MALDI TOF mass spectrometric result suggests that polymer contained Hex(5)Pent(3) as oligomeric building subunit. SEM studies revealed that the polymer had a porous structure with small pore size distribution indicating the compactness of the polymer. This novel EPS may find possible application as a polymer for environmental bioremediation and biotechnological processes.


Peptides | 2014

Identification of multifunctional peptides from human milk.

Santi M. Mandal; Rashmi Bharti; William F. Porto; Samiran S. Gauri; Mahitosh Mandal; Octavio L. Franco; Ananta K. Ghosh

Pharmaceutical industries have renewed interest in screening multifunctional bioactive peptides as a marketable product in health care applications. In this context, several animal and plant peptides with potential bioactivity have been reported. Milk proteins and peptides have received much attention as a source of health-enhancing components to be incorporated into nutraceuticals and functional foods. By using this source, 24 peptides have been fractionated and purified from human milk using RP-HPLC. Multifunctional roles including antimicrobial, antioxidant and growth stimulating activity have been evaluated in all 24 fractions. Nevertheless, only four fractions show multiple combined activities among them. Using a proteomic approach, two of these four peptides have been identified as lactoferrin derived peptide and kappa casein short chain peptide. Lactoferrin derived peptide (f8) is arginine-rich and kappa casein derived (f12) peptide is proline-rich. Both peptides (f8 and f12) showed antimicrobial activities against both Gram-positive and Gram-negative bacteria. Fraction 8 (f8) exhibits growth stimulating activity in 3T3 cell line and f12 shows higher free radical scavenging activity in comparison to other fractions. Finally, both peptides were in silico evaluated and some insights into their mechanism of action were provided. Thus, results indicate that these identified peptides have multiple biological activities which are valuable for the quick development of the neonate and may be considered as potential biotechnological products for nutraceutical industry.


Peptides | 2011

Purification and structural characterization of a novel antibacterial peptide from Bellamya bengalensis: Activity against ampicillin and chloramphenicol resistant Staphylococcus epidermidis

Samiran S. Gauri; Santi M. Mandal; Bikas R. Pati; Satyahari Dey

Increasing tendency of clinical bacterial strains resistant to conventional antibiotics has being a great challenge to the publics health. Antimicrobial peptides, a new class of antibiotics is known to have the activity against a wide range of bacteria resistant to conventional antibiotics. An antimicrobial peptide of 1676 Da was purified from Bellamya bengalensis, a fresh water snail, using ultrafiltration and reversed phase liquid chromatography. The effect of this peptide on Staphylococcus epidermidis resistant to ampicillin and chloramphenicol was investigated; the MIC and MBC values were 8 μg/ml and 16 μg/ml, respectively. Complete sequence of the peptide was determined by tandem mass spectrometry (MS/MS). Further, peptide net charge, hydrophobicity and molecular modeling were evaluated in silico for better understanding the probable mechanisms of action. The peptide showed the specificity to bacterial membranes. Hence, this reported peptide revealed a promising candidate to contribute in the development of therapeutic agent for Staphylococcal infections.


Applied Microbiology and Biotechnology | 2012

Impact of Azotobacter exopolysaccharides on sustainable agriculture

Samiran S. Gauri; Santi M. Mandal; Bikas R. Pati

Recently, increasing attention have lead to search other avenue of biofertilizers with multipurpose activities as a manner of sustainable soil health to improve the plant productivity. Azotobacter have been universally accepted as a major inoculum used in biofertilizer to restore the nitrogen level into cultivated field. Azotobacter is well characterized for their profuse production of exopolysaccharides (EPS). Several reviews on biogenesis and multifunctional role of Azotobacter EPS have been documented with special emphasis on industrial applications. But the impact of Azotobacter EPS in plant growth promotion has not received adequate attention. This review outlines the evidence that demonstrates not only the contribution of Azotobacter EPS in global nutrient cycle but also help to compete successfully in different adverse ecological and edaphic conditions. This also focuses on new insights and concepts of Azotobacter EPS which have positive effects caused by the biofilm formation on overall plant growth promotion with other PGPRs. In addition, their potentials in agricultural improvement are also discussed. Recent data realized that Azotobacter EPS have an immense agro-economical importance including the survivability and maintenance of microbial community in their habitat. This leads us to confirm that the next generation Azotobacter inoculum with high yielding EPS and high nitrogen fixing ability can be utilized to satisfy the future demand of augmented crop production attributed to increase plant growth promoting agents.


Carbohydrate Polymers | 2014

Isolation and characterization of extracellular polysaccharide Thelebolan produced by a newly isolated psychrophilic Antarctic fungus Thelebolus

Sourav Mukhopadhyay; Soumya Chatterjee; Samiran S. Gauri; Shibendu S. Das; Abheepsa Mishra; Moumita Patra; Ananta K. Ghosh; Amit Kumar Das; Shiv Mohan Singh; Satyahari Dey

The present investigation is on a newly isolated psychrophilic Antarctic filamentous Ascomycetous fungus that has been identified as Thelebolus sp. and given the designation of Thelebolus sp. IITKGP-BT12. The culture was primarily identified through morphological studies, and was further confirmed by 18S rRNA sequencing (GenBank Accession No. KC191572), which revealed its close relatedness with Thelebolus microsporus. The exopolysaccharide (EPS) produced (1.94 g L(-1)) by the fungus was isolated, purified and characterized as glucan having an average molecular mass of 5×10(5)Da. The structure of EPS was determined by gas chromatography with tandem mass spectrometry (GC-MS/MS), Fourier transform infrared spectroscopy (FT-IR) and nuclear magnetic resonance (NMR) studies ((1)H, (13)C and HSQC). NMR analysis indicated the presence of (1→3)-linked β-d-glucan backbone with (1→6)-linked branches of β-d-glucopyranosyl units. Antiproliferative activity of EPS was demonstrated in B16-F0 cells, with IC50 of 275.42 μg m L(-1). Flow cytometry analysis and DNA fragmentation studies revealed that the cytotoxic action of the EPS mediated apoptosis in cancer cells. This is the first ever report on bioactive EPS thelebolan from Thelebolus sp.


Bioresource Technology | 2011

Removal of arsenic from aqueous solution using pottery granules coated with cyst of Azotobacter and portland cement: Characterization, kinetics and modeling

Samiran S. Gauri; S. Archanaa; Keshab Chandra Mondal; Bikas R. Pati; Santi M. Mandal; Satyahari Dey

A new low cost adsorbents, pottery granules coated with cyst of Azotobacter and portland cement has been developed for aqueous arsenic removal. The developed granule is solid and porous structure forms a stable complex of Fe-Al-Si-O(2) allied with cyst biomass. Batch experiments were revealed that As removal was up to 96% using PGAC beads, whereas 65% by cyst biomass. Immobilization of cyst biomass to pottery granules through portland cement improved the stability of granules and adsorption capacity. Kinetics studies revealed that Langmuir isotherm was followed with a better correlation than the Freundlich isotherm and adsorption was first order diffusion controlled. Presence of Fe-Al-Si-O(2) and polysaccharide complex on the granule surface may be responsible for the adsorption of arsenic and preferentially binds to biomass containing composite than only biomass. Thus, this recently developed cost-effective novel biocomposite, PGAC granule can be used as household level to mitigate the arsenic problem.


Plant Science | 2013

Purification and characterization of a betanidin glucosyltransferase from Amaranthus tricolor L catalyzing non-specific biotransformation of flavonoids

Shibendu S. Das; Samiran S. Gauri; Biswapriya B. Misra; Mousumi Biswas; Satyahari Dey

Betacyanins are the major pigments present in Amaranthus tricolor, a leafy vegetable consumed globally. The terminal glycosylation of the aglycone betanidin is an important step in the biosynthesis of this natural red antioxidant pigment. A betanidin 5-O-glucosyltransferase (BGT) was fully purified to 134 folds (specific activity, 265.2 nkat mg(-1)) from the red amaranth by ammonium sulfate precipitation followed by hydrophobic interaction, anion exchange and size exclusion chromatography. Homogeneity of the purified protein was confirmed by 2-dimensional polyacrylamide gel electrophoresis (2D PAGE). The molecular weight of the enzyme determined by liquid chromatography-mass spectrometry (LC-MS) was found to be 62.8 kDa. Furthermore, the enzyme glycosylated flavonoids (kaempferol and quercetin) but not anthocyanidins, presence of which is mutually exclusive to betacyanin accumulating plants. The apparent Km (344±2.34 μM) and Vmax (17.24 μM min(-1)) of the enzyme were determined by LC-MS/MS. Peptide mass fingerprinting of the purified protein showed 38.4% coverage of peptide masses with anthocyanidin 3-O-glucosyltransferase from Zea mays. Study on this purified enzyme, for the first time, revealed its role of glycosylation in biosynthesis of betacyanin in A. tricolor and indicates promiscuous substrate-specificity.


New Journal of Chemistry | 2016

In situ fluorescence of lac dye stabilized gold nanoparticles; DNA binding assay and toxicity study

Sutanuka Pattanayak; Sharmila Chakraborty; Md. Masud Rahaman Mollick; Indranil Roy; Samita Basu; Dipak Rana; Samiran S. Gauri; Dipankar Chattopadhyay; Mukut Chakraborty

Lac, a natural resin, is used to synthesize gold nanoparticles (AuNPs). This biodegradable natural fluorophore contains different laccaic acids, which consist of mainly the derivatives of red anthraquinone dye. For the first time, we report an in situ green synthesis of fluorophore stabilized AuNPs. The synthesis of AuNPs is monitored using both excitation and emission spectrophotometry, which gives us an idea about the progress of the reaction during nanoparticles synthesis. The size of the synthesized nanoparticles is visualised by TEM. The TEM data of the AuNPs are also correlated using DLS measurements, and the zeta potential values establish the stability of the nanoparticles. The FTIR spectra indicate the different groups present in lac and also their probable interactions during the reducing-cum-stabilizing process with the nanoparticles. The AuNPs are crystalline in nature, which is established by XRD analysis. The lac extract also binds with calf thymus DNA and forms a ground state complex, which is established spectrophotometrically by UV-Vis, as well as fluorimetrically. The antimicrobial tests against bacteria and the antitoxicity study have revealed that the lac stabilized AuNPs are safe and non-toxic, having the potential for clinical applications in the medical field.


Journal of Applied Microbiology | 2013

Novel route of tannic acid biotransformation and their effect on major biopolymer synthesis in Azotobacter sp. SSB81.

Samiran S. Gauri; Santi M. Mandal; S. Atta; Satyahari Dey; Bikash Ranjan Pati

To examine tannic acid (TA) utilization capacity by nitrogen‐fixing bacteria, Azotobacter sp. SSB81, and identify the intermediate products during biotransformation. Another aim of this work is to investigate the effects of TA on major biopolymers like extracellular polysaccharide (EPS) and polyhydroxybutyrate (PHB) synthesis.

Collaboration


Dive into the Samiran S. Gauri's collaboration.

Top Co-Authors

Avatar

Satyahari Dey

Indian Institute of Technology Kharagpur

View shared research outputs
Top Co-Authors

Avatar

Santi M. Mandal

Indian Institute of Technology Kharagpur

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Shibendu S. Das

Indian Institute of Technology Kharagpur

View shared research outputs
Top Co-Authors

Avatar

Ananta K. Ghosh

Indian Institute of Technology Kharagpur

View shared research outputs
Top Co-Authors

Avatar

Soumya Chatterjee

Indian Institute of Technology Kharagpur

View shared research outputs
Top Co-Authors

Avatar

Sourav Mukhopadhyay

Indian Institute of Technology Kharagpur

View shared research outputs
Top Co-Authors

Avatar

Abheepsa Mishra

Indian Institute of Technology Kharagpur

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge