Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Samo B. Hočevar is active.

Publication


Featured researches published by Samo B. Hočevar.


Electrochemistry Communications | 2001

An introduction to bismuth film electrode for use in cathodic electrochemical detection

Emily A. Hutton; Božidar Ogorevc; Samo B. Hočevar; Frances Weldon; Malcolm R. Smyth; Joseph Wang

Abstract A new electrode surface design, the bismuth film electrode (BiFE), is presented as a promising alternative to mercury and other solid electrodes for direct cathodic electrochemical detection of organic compounds. The preparation of the BiFE, involving an ex situ electroplating of metallic bismuth onto a glassy carbon (GC) substrate electrode, was optimised. The useful negative potential windows of the BiFE in the pH range 1 (−0.2 to −0.8 V vs Ag/AgCl) to 10 (−0.2 to −1.5 V) were determined. The reproducibility of measuring 2-nitrophenol as a model compound (relative standard deviation, r.s.d., n =10) was found to be 0.5% at the same BiFE, and 1.0% at successive newly prepared BiFEs. No polishing or any other pre-treatment of the substrate GC surface was required prior to re-plating of a new Bi film. The BiFE showed similar or even favourable voltammetric behaviour when compared to mercury and bare GC electrodes, and was successfully tested for amperometric detection under hydrodynamic conditions. The results revealed that BiFE is an attractive new non-mercury metallic electrode particularly suitable for cathodic electrochemical detection in flow analytical systems.


Electrochemistry Communications | 2003

Bismuth film electrode for simultaneous adsorptive stripping analysis of trace cobalt and nickel using constant current chronopotentiometric and voltammetric protocol

Emily A. Hutton; Samo B. Hočevar; Božidar Ogorevc; Malcolm R. Smyth

Abstract Bismuth film electrode (BiFE) is presented as a promising alternative to mercury electrodes for the simultaneous determination of trace cobalt and nickel in non-deoxygenated solutions. The preplated BiFE was employed under adsorptive stripping constant current chronopotentiometric and adsorptive stripping voltammetric conditions in the presence of dimethylglyoxime complexing agent. BiFE exhibited well-defined and undistorted signals with favorable overall resolution for cobalt and nickel cations, with the signals for both metal cations being practically independent of each other. The stripping performance of BiFE is characterized by good reproducibility (RSD 1.4% for Co(II), and 4.3% for Ni(II)), low detection limits of 0.08 μg l−1 for Co(II) and 0.26 μg l−1 for Ni(II) employing a deposition time of 60 s, in addition to good linearity. The non-toxic character of bismuth imparts the possibility of tailoring disposable and one-shot electrochemical sensors for decentralized environmental, clinical and industrial monitoring of trace cobalt and nickel.


Electroanalysis | 2002

Electrically Heated Bismuth-Film Electrode for Voltammetric Stripping Measurements of Trace Metals

Gerd-Uwe Flechsig; Olga Korbout; Samo B. Hočevar; Sompong Thongngamdee; Bozidar Ogorevc; Peter Gründler; Joseph Wang

Bismuth-coated carbon paste electrodes display an attractive stripping voltammetric behavior which improves greatly upon heating the electrode during the deposition step. Such “hot-electrode” operation leads to a dramatic enhancement of the stripping peaks of lead, cadmium and zinc, while retaining low background currents. The influence of relevant parameters, including the heating current, deposition potential and deposition time is examined. The stripping signals for selected heavy metals result in sharp, well defined and undistorted peaks, with favorable reproducibility (5%). Highly linear calibration plot (correlation coefficient, 0.9986) is observed over the 20–140 μg/L lead range. An estimated detection limit of 3.16 μg/L lead could be observed on the basis of signal-to-noise ratio.


Analytical Chemistry | 2012

Diagnostics of Anodic Stripping Mechanisms under Square-Wave Voltammetry Conditions Using Bismuth Film Substrates

Valentin Mirčeski; Samo B. Hočevar; Bozidar Ogorevc; Rubin Gulaboski; Ivan Drangov

A mechanistic study to provide diagnostics of anodic stripping electrode processes at bismuth-film electrodes is presented from both theoretical and experimental points of view. Theoretical models for three types of electrode mechanisms are developed under conditions of square-wave voltammetry, combining rigorous modeling based on integral equations and the step function method, resulting in derivation of a single numerical recurrent formula to predict the outcome of the voltammetric experiment. In the course of the deposition step, it has been assumed that a uniform film of the metal analyte is formed on the bismuth substrate, in situ deposited onto a glassy carbon electrode surface, without considering mass transfer within either the bismuth or the metal analyte film. Theoretical data are analyzed in terms of dimensionless critical parameters related with electrode kinetics, mass transfer, adsorption equilibria, and possible lateral interactions within the deposited metal particles. Theoretical analysis enables definition of simple criteria for differentiation and characterization of electrode processes. Comparing theoretical and experimental data, anodic stripping processes of zinc(II), cadmium(II), and lead(II) are successfully characterized, revealing significant differences in their reaction pathways. The proposed easy-to-perform diagnostic route is considered to be of a general use while the bismuth film exploited in this study served as a convenient nonmercury model substrate surface.


Talanta | 2007

Preparation and characterization of carbon paste micro-electrode based on carbon nano-particles

Samo B. Hočevar; Božidar Ogorevc

The present paper demonstrates the preparation and characterization of micro-electrodes based on carbon paste which is composed of carbon nanoparticles with an average diameter of 30 nm and binding oil. The carbon paste electrode material is encased in pulled glass capillaries ranging in diameter from several tens down to less than ten micro-meters (r=4.5 microm). Manipulation of the carbon paste micro-electrode (CPME) was accomplished via newly developed piston-driven system which construction and related problems are presented. Several parameters influencing the CPME performance including carbon paste composition and its electrochemical activation/preconditioning were investigated. Basic electrochemical behavior and properties were examined using typical redox system, i.e. potassium hexacyanoferrate. Applicability of the proposed carbon paste micro-electrode is illustrated by measuring some potentially interesting organic and inorganic analytes such as dopamine, ascorbic acid and selected heavy metals.


Frontiers in Bioscience | 2005

Nickel hexacyanoferrate modified screen-printed carbon electrode for sensitive detection of ascorbic acid and hydrogen peroxide.

Jie Lin; Dao Min Zhou; Samo B. Hočevar; Eric T. McAdams; Bozidar Ogorevc; Xueji Zhang

Electrochemically modified screen-printed carbon electrode (SPCE) has been prepared by electrodepositing nickel hexacyanoferrate(III) (NiHCF) onto the electrode surface using cyclic voltammetry (CV). The performance of NiHCF-SPCE sensor was characterized and optimized by controlling several operational parameters. The NiHCF film has been proven to remain stable after CV scanning from 0 to +1.0 V vs. Ag/AgCl in the pH range of 3 to 10 and is re-useable. The most favourable supporting electrolyte solution exhibiting the optimum electroanalytical performance of the NiHCF-SPCE sensor was found to be 0.2 mol/L sodium nitrate. The electrochemical response toward ascorbic acid (AA) and H2O2 in 0.2 mol/L sodium nitrate solution was studied by using CV and the results showed that both analytes were electrocatalytically oxidized at approximately +0.4 V, while H2O2 also revealed a reduction signal at -0.8 V vs. Ag/AgCl. The NiHCF-SPCE sensor exhibited highly linear response for AA and H2O2 in the examined concentration range from 5.0x10-5 to 1.5x10-3 mol/L and from 2.0x10-5 to 1.0x10-3 mol/L (at +0.4 V), with the correlation coefficients of 0.999 and 0.998, respectively. The reproducibility of the NiHCF-SPCE sensor was followed for the determination of AA by using four individual electrodes, and the relative standard deviation of CV peak currents varied between 0.9 % and 2.2 %. The proposed NiHCF-SPCE has been shown to be a very attractive electrochemical sensor for AA and H2O2, also in a view of inexpensive mass production of disposable single-use sensors. The NiHCF-SPCE sensor was tested by measuring AA in multivitamin tablets, with recoveries obtained between 94.4 % and 108.2 % (n=5).


Analytica Chimica Acta | 2013

Functioning of antimony film electrode in acid media under cyclic and anodic stripping voltammetry conditions.

Bine Sebez; Bozidar Ogorevc; Samo B. Hočevar; Marjan Veber

New insights into the functioning, i.e. electrochemical behaviour and analytical performance, of in situ prepared antimony film electrodes (SbFEs) under square-wave anodic stripping (SW-ASV) and cyclic (CV) voltammetry conditions are presented by studying several key operational parameters using Pb(II), Cd(II) and Zn(II) as model analyte ions. Five different carbon- and metal-based substrate transducer electrodes revealed a clear advantage of the former ones while the concentration of the precursor Sb(III) ion exhibited a distinct influence on the ASV functioning of the SbFE. Among six acids examined as potential supporting electrolytes the HNO3 was demonstrated to yield nearly identical results in conducting ASV experiments with SbFE as so far almost exclusively used HCl. This is extremely important as HNO3 is commonly employed acidifying agent in trace metal analysis, especially in elemental mass spectrometry measurements. By carrying out a systematic CV and ASV investigation using a medium exchange protocol, we confirmed the formation of poorly soluble oxidized Sb species at the substrate electrode surface at the end of each stripping step, i.e. at the potentials beyond the anodic dissolution of the antimony film. Hence, the significance of the cleaning and initializing the surface of a substrate electrode after accomplishing a stripping step was thoroughly studied in order to find conditions for a complete removal of the adhered Sb-oxides and thus to assure a memory-free functioning of the in situ prepared SbFE. Finally, the practical analytical application of the proposed ASV method was successfully tested and evaluated by measuring the three metal analytes in ground (tap) and surface (river) water samples acidified with HNO3. Our results approved the appropriateness of the SbFE and the proposed method for measuring low μg L(-1) levels of some toxic metals, particularly taking into account the possibility of on-field testing and the use of low cost instrumentation.


Toxicology in Vitro | 2017

Comparative in vitro genotoxicity study of ZnO nanoparticles, ZnO macroparticles and ZnCl2 to MDCK kidney cells: Size matters.

Veno Kononenko; Neža Repar; Nika Marušič; Barbara Drašler; Tea Romih; Samo B. Hočevar; Damjana Drobne

In the present study, we evaluated the roles that ZnO particle size and Zn ion release have on cyto- and genotoxicity in vitro. The Madin-Darby canine kidney (MDCK) cells were treated with ZnO nanoparticles (NPs), ZnO macroparticles (MPs), and ZnCl2 as a source of free Zn ions. We first tested cytotoxicity to define sub-cytotoxic exposure concentrations and afterwards we performed alkaline comet and cytokinesis-block micronucleus assays. Additionally, the activities of both catalase (CAT) and glutathione S-transferase (GST) were evaluated in order to examine the potential impairment of cellular stress-defence capacity. The amount of dissolved Zn ions from ZnO NPs in the cell culture medium was evaluated by an optimized voltammetric method. The results showed that all the tested zinc compounds induced similar concentration-dependent cytotoxicity, but only ZnO NPs significantly elevated DNA and chromosomal damage, which was accompanied by a reduction of GST and CAT activity. Although Zn ion release from ZnO NPs in cell culture medium was significant, our results show that this reason alone cannot explain the ZnO genotoxicity seen in this experiment. We discuss that genotoxicity of ZnO NPs depends on the particle size, which determines the physical principles of their dissolution and cellular internalisation.


Analytica Chimica Acta | 2010

Amperometric microsensor for direct probing of ascorbic acid in human gastric juice.

Emily A. Hutton; Rasa Pauliukaitė; Samo B. Hočevar; Božidar Ogorevc; Malcolm R. Smyth

This article reports on a novel microsensor for amperometric measurement of ascorbic acid (AA) under acidic conditions (pH 2) based on a carbon fiber microelectrode (CFME) modified with nickel oxide and ruthenium hexacyanoferrate (NiO-RuHCF). This sensing layer was deposited electrochemically in a two-step procedure involving an initial galvanostatic NiO deposition followed by a potentiodynamic RuHCF deposition from solutions containing the precursor salts. Several important parameters were examined to characterize and optimize the NiO-RuHCF sensing layer with respect to its current response to AA by using cyclic voltammetry, and scanning electron microscopy-energy dispersive X-ray spectroscopy methods. With the NiO-RuHCF coated CFME, the AA oxidation potential under acidic conditions was shifted to a less positive value for about 0.2 V (E(p) of ca. 0.23 V vs. Ag/AgCl) as compared to a bare CFME, which greatly improves the electrochemical selectivity. Using the hydrodynamic amperometry mode, the current vs. AA concentration in 0.01 M HCl, at a selected operating potential of 0.30 V, was found to be linear over a wide range of 10-1610 μM (n=22, r=0.999) with a calculated limit of detection of 1.0 μM. The measurement repeatability was satisfactory with a relative standard deviation (r.s.d.) ranging from 4% to 5% (n=6), depending on the AA concentration, and with a sensor-to-sensor reproducibility (r.s.d.) of 6.9% at 100 μM AA. The long-term reproducibility, using the same microsensor for 112 consecutive measurements of 20 μM AA over 11 h of periodic probing sets over 4 days, was 16.1% r.s.d., thus showing very good stability at low AA levels and suitability for use over a prolonged period of time. Moreover, using the proposed microsensor, additionally coated with a protective cellulose acetate membrane, the calibration plot obtained in the extremely complex matrix of real undiluted gastric juice was linear from 10 to 520 μM (n=14, r=0.998). These results demonstrated the unique featuring of the proposed NiO-RuHCF microsensor under acidic conditions with enhanced sensitivity and stability and proved its promising potentiality for direct amperometric probing of AA at physiological levels in real gastric juice environments.


Journal of the American Chemical Society | 2017

Electrochemical Dissolution of Iridium and Iridium Oxide Particles in Acidic Media: Transmission Electron Microscopy, Electrochemical Flow Cell Coupled to Inductively Coupled Plasma Mass Spectrometry, and X-ray Absorption Spectroscopy Study

Primož Jovanovič; Nejc Hodnik; Francisco Ruiz-Zepeda; Iztok Arčon; Barbara Jozinović; Milena Zorko; Marjan Bele; Martin Šala; Vid Simon Šelih; Samo B. Hočevar; Miran Gaberšček

Iridium-based particles, regarded as the most promising proton exchange membrane electrolyzer electrocatalysts, were investigated by transmission electron microscopy and by coupling of an electrochemical flow cell (EFC) with online inductively coupled plasma mass spectrometry. Additionally, studies using a thin-film rotating disc electrode, identical location transmission and scanning electron microscopy, as well as X-ray absorption spectroscopy have been performed. Extremely sensitive online time-and potential-resolved electrochemical dissolution profiles revealed that Ir particles dissolve well below oxygen evolution reaction (OER) potentials, presumably induced by Ir surface oxidation and reduction processes, also referred to as transient dissolution. Overall, thermally prepared rutile-type IrO2 particles are substantially more stable and less active in comparison to as-prepared metallic and electrochemically pretreated (E-Ir) analogues. Interestingly, under OER-relevant conditions, E-Ir particles exhibit superior stability and activity owing to the altered corrosion mechanism, where the formation of unstable Ir(>IV) species is hindered. Due to the enhanced and lasting OER performance, electrochemically pre-oxidized E-Ir particles may be considered as the electrocatalyst of choice for an improved low-temperature electrochemical hydrogen production device, namely a proton exchange membrane electrolyzer.

Collaboration


Dive into the Samo B. Hočevar's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Joseph Wang

University of California

View shared research outputs
Top Co-Authors

Avatar

Karel Vytras

University of Pardubice

View shared research outputs
Top Co-Authors

Avatar

Hanna Sopha

University of Pardubice

View shared research outputs
Top Co-Authors

Avatar

Vasko Jovanovski

United States Department of Energy

View shared research outputs
Top Co-Authors

Avatar

Boris Pihlar

University of Ljubljana

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Tea Romih

University of Ljubljana

View shared research outputs
Researchain Logo
Decentralizing Knowledge