Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Samo Lasič is active.

Publication


Featured researches published by Samo Lasič.


Magnetic Resonance in Medicine | 2013

Noninvasive mapping of water diffusional exchange in the human brain using filter-exchange imaging.

Markus Nilsson; Jimmy Lätt; Danielle van Westen; Sara Brockstedt; Samo Lasič; Freddy Ståhlberg; Daniel Topgaard

We present the first in vivo application of the filter‐exchange imaging protocol for diffusion MRI. The protocol allows noninvasive mapping of the rate of water exchange between microenvironments with different self‐diffusivities, such as the intracellular and extracellular spaces in tissue. Since diffusional water exchange across the cell membrane is a fundamental process in human physiology and pathophysiology, clinically feasible and noninvasive imaging of the water exchange rate would offer new means to diagnose disease and monitor treatment response in conditions such as cancer and edema. The in vivo use of filter‐exchange imaging was demonstrated by studying the brain of five healthy volunteers and one intracranial tumor (meningioma). Apparent exchange rates in white matter range from 0.8 ± 0.08 s−1 in the internal capsule, to 1.6 ± 0.11 s−1 for frontal white matter, indicating that low values are associated with high myelination. Solid tumor displayed values of up to 2.9 ± 0.8 s−1. In white matter, the apparent exchange rate values suggest intra‐axonal exchange times in the order of seconds, confirming the slow exchange assumption in the analysis of diffusion MRI data. We propose that filter‐exchange imaging could be used clinically to map the water exchange rate in pathologies. Filter‐exchange imaging may also be valuable for evaluating novel therapies targeting the function of aquaporins. Magn Reson Med, 2013.


Frontiers of Physics in China | 2014

Microanisotropy imaging: quantification of microscopic diffusion anisotropy and orientational order parameter by diffusion MRI with magic-angle spinning of the q-vector

Samo Lasič; Filip Szczepankiewicz; Stefanie Eriksson; Markus Nilsson; Daniel Topgaard

Diffusion tensor imaging (DTI) is the method of choice for non-invasive investigations of the structure of human brain white matter. The results are conventionally reported as maps of the fractional anisotropy (FA), which is a parameter related to microstructural features such as axon density, diameter, and myelination. The interpretation of FA in terms of microstructure becomes ambiguous when there is a distribution of axon orientations within the image voxel. In this paper, we propose a procedure for resolving this ambiguity by determining a new parameter, the microscopic fractional anisotropy (µFA), which corresponds to the FA without the confounding influence of orientation dispersion. In addition, we suggest a method for measuring the orientational order parameter (OP) for the anisotropic objects. The experimental protocol is capitalizing on a recently developed diffusion NMR pulse sequence based on magic-angle spinning of the q-vector. Proof-of-principle experiments are carried out on microimaging and clinical MRI equipment using lyotropic liquid crystals and plant tissues as model materials with high µFA and low FA on account of orientation dispersion. We expect the presented method to be especially fruitful in combination with DTI and high angular resolution acquisition protocols for neuroimaging studies of grey and white matter.


Journal of Magnetic Resonance | 2013

Isotropic diffusion weighting in PGSE NMR by magic-angle spinning of the q-vector.

Stefanie Eriksson; Samo Lasič; Daniel Topgaard

When PGSE NMR is applied to water in microheterogeneous materials such as liquid crystals, foodstuffs, porous rocks, and biological tissues, the signal attenuation is often multi-exponential, indicating the presence of pores having a range of sizes or anisotropic domains having a spread of orientations. Here we modify the standard PGSE experiment by introducing low-amplitude harmonically modulated gradients, which effectively make the q-vector perform magic-angle spinning (MAS) about an axis fixed in the laboratory frame. With this new technique, denoted q-MAS PGSE, the signal attenuation depends on the isotropic average of the local diffusion tensor. The capability of q-MAS PGSE to distinguish between pore size and domain orientation dispersion is demonstrated by experiments on a yeast cell suspension and a polydomain anisotropic liquid crystal. In the latter case, the broad distribution of apparent diffusivities observed with PGSE is narrowed to its isotropic average with q-MAS PGSE in a manner that is analogous to the narrowing of chemical shift anisotropy powder patterns using magic-angle sample spinning in solid-state NMR. The new q-MAS PGSE technique could be useful for resolving size/orientation ambiguities in the interpretation of PGSE data from, e.g., water confined within the axons of human brain tissue.


Magnetic Resonance in Medicine | 2011

Apparent exchange rate mapping with diffusion MRI.

Samo Lasič; Markus Nilsson; Jimmy Lätt; Freddy Ståhlberg; Daniel Topgaard

Water exchange through the cell membranes is an important feature of cells and tissues. The rate of exchange is determined by factors such as membrane lipid composition and organization, as well as the type and activity of aquaporins. A method for noninvasively estimating the rate of water exchange would be useful for characterizing pathological conditions, e.g., tumors, multiple sclerosis, and ischemic stroke, expected to be associated with a change of the membrane barrier properties. This study describes the filter exchange imaging method for determining the rate of water exchange between sites having different apparent diffusion coefficients. The method is based on the filter‐exchange pulsed gradient spin‐echo NMR spectroscopy experiment, which is here modified to be compatible with the constraints of clinical MR scanners. The data is analyzed using a model‐free approach yielding maps of the apparent exchange rate, here being introduced in analogy with the concept of the apparent diffusion coefficient. Proof‐of‐principle experiments are performed on microimaging and whole‐body clinical scanners using yeast suspension phantoms. The limitations and appropriate experimental conditions are examined. The results demonstrate that filter exchange imaging is a fast and reliable method for characterizing exchange, and that it has the potential to become a powerful diagnostic tool. Magn Reson Med, 2011.


Journal of Chemical Physics | 2015

NMR diffusion-encoding with axial symmetry and variable anisotropy: Distinguishing between prolate and oblate microscopic diffusion tensors with unknown orientation distribution

Stefanie Eriksson; Samo Lasič; Markus Nilsson; Carl-Fredrik Westin; Daniel Topgaard

We introduce a nuclear magnetic resonance method for quantifying the shape of axially symmetric microscopic diffusion tensors in terms of a new diffusion anisotropy metric, DΔ, which has unique values for oblate, spherical, and prolate tensor shapes. The pulse sequence includes a series of equal-amplitude magnetic field gradient pulse pairs, the directions of which are tailored to give an axially symmetric diffusion-encoding tensor b with variable anisotropy bΔ. Averaging of data acquired for a range of orientations of the symmetry axis of the tensor b renders the method insensitive to the orientation distribution function of the microscopic diffusion tensors. Proof-of-principle experiments are performed on water in polydomain lyotropic liquid crystals with geometries that give rise to microscopic diffusion tensors with oblate, spherical, and prolate shapes. The method could be useful for characterizing the geometry of fluid-filled compartments in porous solids, soft matter, and biological tissues.


NMR in Biomedicine | 2017

Resolution limit of cylinder diameter estimation by diffusion MRI: The impact of gradient waveform and orientation dispersion

Markus Nilsson; Samo Lasič; Ivana Drobnjak; Daniel Topgaard; Carl-Fredrik Westin

Diffusion MRI has been proposed as a non‐invasive technique for axonal diameter mapping. However, accurate estimation of small diameters requires strong gradients, which is a challenge for the transition of the technique from preclinical to clinical MRI scanners, since these have weaker gradients. In this work, we develop a framework to estimate the lower bound for accurate diameter estimation, which we refer to as the resolution limit. We analyse only the contribution from the intra‐axonal space and assume that axons can be represented by impermeable cylinders. To address the growing interest in using techniques for diffusion encoding that go beyond the conventional single diffusion encoding (SDE) sequence, we present a generalised analysis capable of predicting the resolution limit regardless of the gradient waveform. Using this framework, waveforms were optimised to minimise the resolution limit. The results show that, for parallel cylinders, the SDE experiment is optimal in terms of yielding the lowest possible resolution limit. In the presence of orientation dispersion, diffusion encoding sequences with square‐wave oscillating gradients were optimal. The resolution limit for standard clinical MRI scanners (maximum gradient strength 60–80 mT/m) was found to be between 4 and 8 μm, depending on the noise levels and the level of orientation dispersion. For scanners with a maximum gradient strength of 300 mT/m, the limit was reduced to between 2 and 5 μm.


NMR in Biomedicine | 2016

Quantification of microcirculatory parameters by joint analysis of flow-compensated and non-flow-compensated intravoxel incoherent motion (IVIM) data

André Ahlgren; Linda Knutsson; Ronnie Wirestam; Markus Nilsson; Freddy Ståhlberg; Daniel Topgaard; Samo Lasič

The aim of this study was to improve the accuracy and precision of perfusion fraction and blood velocity dispersion estimates in intravoxel incoherent motion (IVIM) imaging, using joint analysis of flow‐compensated and non‐flow‐compensated motion‐encoded MRI data. A double diffusion encoding sequence capable of switching between flow‐compensated and non‐flow‐compensated encoding modes was implemented. In vivo brain data were collected in eight healthy volunteers and processed using the joint analysis. Simulations were used to compare the performance of the proposed analysis method with conventional IVIM analysis. With flow compensation, strong rephasing was observed for the in vivo data, approximately cancelling the IVIM effect. The joint analysis yielded physiologically reasonable perfusion fraction maps. Estimated perfusion fractions were 2.43 ± 0.81% in gray matter, 1.81 ± 0.90% in deep gray matter, and 1.64 ± 0.72% in white matter (mean ± SD, n = 8). Simulations showed improved accuracy and precision when using joint analysis of flow‐compensated and non‐flow‐compensated data, compared with conventional IVIM analysis. Double diffusion encoding with flow compensation was feasible for in vivo imaging of the perfusion fraction in the brain. The strong rephasing implied that blood flowing through the cerebral microvascular system was closer to the ballistic limit than the diffusive limit.


Journal of Magnetic Resonance | 2009

Spectral characterization of diffusion with chemical shift resolution: Highly concentrated water-in-oil emulsion

Samo Lasič; Ingrid Åslund; Daniel Topgaard

We present a modulated gradient spin-echo method, which uses a train of sinusoidally shaped gradient pulses separated by 180 degrees radio-frequency (RF) pulses. The RF pulses efficiently refocus chemical shifts and de-phasing due to susceptibility differences, resulting in undistorted, high-resolution diffusion weighted spectra. This allows for the simultaneous spectral characterization of the diffusion of several molecular species with different chemical shifts. The technique is robust against susceptibility artifacts, field inhomogeneity and imperfections in the gradient generating equipment. The feasibility of the technique is demonstrated by measuring the diffusion of water, oil, and water-soluble salt in a highly concentrated water-in-oil emulsion. The diffusion of water and salt reveal precise information about the droplet size distribution below the mum-range. Common droplet size distribution explains both the data for water with finite long-range diffusion and the data for salt with negligible long-range diffusion. The results of water diffusion show that the technique is efficient in deconvolving the effects of molecular exchange between droplets and restricted diffusion within droplets. The effects of water exchange suggest that droplets of different sizes are uniformly distributed within the sample.


NMR in Biomedicine | 2016

Apparent exchange rate for breast cancer characterization.

Samo Lasič; Stina Oredsson; Savannah C. Partridge; Lao H. Saal; Daniel Topgaard; Markus Nilsson; Karin Bryskhe

Although diffusion MRI has shown promise for the characterization of breast cancer, it has low specificity to malignant subtypes. Higher specificity might be achieved if the effects of cell morphology and molecular exchange across cell membranes could be disentangled. The quantification of exchange might thus allow the differentiation of different types of breast cancer cells. Based on differences in diffusion rates between the intra‐ and extracellular compartments, filter exchange spectroscopy/imaging (FEXSY/FEXI) provides non‐invasive quantification of the apparent exchange rate (AXR) of water between the two compartments. To test the feasibility of FEXSY for the differentiation of different breast cancer cells, we performed experiments on several breast epithelial cell lines in vitro. Furthermore, we performed the first in vivo FEXI measurement of water exchange in human breast. In cell suspensions, pulsed gradient spin‐echo experiments with large b values and variable pulse duration allow the characterization of the intracellular compartment, whereas FEXSY provides a quantification of AXR. These experiments are very sensitive to the physiological state of cells and can be used to establish reliable protocols for the culture and harvesting of cells. Our results suggest that different breast cancer subtypes can be distinguished on the basis of their AXR values in cell suspensions. Time‐resolved measurements allow the monitoring of the physiological state of cells in suspensions over the time‐scale of hours, and reveal an abrupt disintegration of the intracellular compartment. In vivo, exchange can be detected in a tumor, whereas, in normal tissue, the exchange rate is outside the range experimentally accessible for FEXI. At present, low signal‐to‐noise ratio and limited scan time allows the quantification of AXR only in a region of interest of relatively large tumors.


PLOS ONE | 2017

NMR quantification of diffusional exchange in cell suspensions with relaxation rate differences between intra and extracellular compartments

Stefanie Eriksson; Karin Elbing; Olle Söderman; Karin Lindkvist-Petersson; Daniel Topgaard; Samo Lasič

Water transport across cell membranes can be measured non-invasively with diffusion NMR. We present a method to quantify the intracellular lifetime of water in cell suspensions with short transverse relaxation times, T2, and also circumvent the confounding effect of different T2 values in the intra- and extracellular compartments. Filter exchange spectroscopy (FEXSY) is specifically sensitive to exchange between compartments with different apparent diffusivities. Our investigation shows that FEXSY could yield significantly biased results if differences in T2 are not accounted for. To mitigate this problem, we propose combining FEXSY with diffusion-relaxation correlation experiment, which can quantify differences in T2 values in compartments with different diffusivities. Our analysis uses a joint constrained fitting of the two datasets and considers the effects of diffusion, relaxation and exchange in both experiments. The method is demonstrated on yeast cells with and without human aquaporins.

Collaboration


Dive into the Samo Lasič's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Carl-Fredrik Westin

Brigham and Women's Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Henrik Lundell

Copenhagen University Hospital

View shared research outputs
Top Co-Authors

Avatar

Tim B. Dyrby

Copenhagen University Hospital

View shared research outputs
Researchain Logo
Decentralizing Knowledge