Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Samraat Pawar is active.

Publication


Featured researches published by Samraat Pawar.


Proceedings of the National Academy of Sciences of the United States of America | 2011

Systematic variation in the temperature dependence of physiological and ecological traits

Anthony I. Dell; Samraat Pawar; Van M. Savage

To understand the effects of temperature on biological systems, we compile, organize, and analyze a database of 1,072 thermal responses for microbes, plants, and animals. The unprecedented diversity of traits (n = 112), species (n = 309), body sizes (15 orders of magnitude), and habitats (all major biomes) in our database allows us to quantify novel features of the temperature response of biological traits. In particular, analysis of the rising component of within-species (intraspecific) responses reveals that 87% are fit well by the Boltzmann–Arrhenius model. The mean activation energy for these rises is 0.66 ± 0.05 eV, similar to the reported across-species (interspecific) value of 0.65 eV. However, systematic variation in the distribution of rise activation energies is evident, including previously unrecognized right skewness around a median of 0.55 eV. This skewness exists across levels of organization, taxa, trophic groups, and habitats, and it is partially explained by prey having increased trait performance at lower temperatures relative to predators, suggesting a thermal version of the life-dinner principle—stronger selection on running for your life than running for your dinner. For unimodal responses, habitat (marine, freshwater, and terrestrial) largely explains the mean temperature at which trait values are optimal but not variation around the mean. The distribution of activation energies for trait falls has a mean of 1.15 ± 0.39 eV (significantly higher than rises) and is also right-skewed. Our results highlight generalities and deviations in the thermal response of biological traits and help to provide a basis to predict better how biological systems, from cells to communities, respond to temperature change.


Nature | 2012

Dimensionality of consumer search space drives trophic interaction strengths

Samraat Pawar; Anthony I. Dell; Van M. Savage

Trophic interactions govern biomass fluxes in ecosystems, and stability in food webs. Knowledge of how trophic interaction strengths are affected by differences among habitats is crucial for understanding variation in ecological systems. Here we show how substantial variation in consumption-rate data, and hence trophic interaction strengths, arises because consumers tend to encounter resources more frequently in three dimensions (3D) (for example, arboreal and pelagic zones) than two dimensions (2D) (for example, terrestrial and benthic zones). By combining new theory with extensive data (376 species, with body masses ranging from 5.24 × 10−14 kg to 800 kg), we find that consumption rates scale sublinearly with consumer body mass (exponent of approximately 0.85) for 2D interactions, but superlinearly (exponent of approximately 1.06) for 3D interactions. These results contradict the currently widespread assumption of a single exponent (of approximately 0.75) in consumer–resource and food-web research. Further analysis of 2,929 consumer–resource interactions shows that dimensionality of consumer search space is probably a major driver of species coexistence, and the stability and abundance of populations.


Ecology Letters | 2014

Correlation between interaction strengths drives stability in large ecological networks

Si Tang; Samraat Pawar; Stefano Allesina

Food webs have markedly non-random network structure. Ecologists maintain that this non-random structure is key for stability, since large random ecological networks would invariably be unstable and thus should not be observed empirically. Here we show that a simple yet overlooked feature of natural food webs, the correlation between the effects of consumers on resources and those of resources on consumers, substantially accounts for their stability. Remarkably, random food webs built by preserving just the distribution and correlation of interaction strengths have stability properties similar to those of the corresponding empirical systems. Surprisingly, we find that the effect of topological network structure on stability, which has been the focus of countless studies, is small compared to that of correlation. Hence, any study of the effects of network structure on stability must first take into account the distribution and correlation of interaction strengths.


BioScience | 2003

Taxonomic Chauvinism and the Methodologically Challenged

Samraat Pawar

Abstract In tropical ecology, the effect of uneven development of research protocol across faunal groups is a major contributor to the taxonomic bias evident in the contemporary biological literature. Methodological problems can seriously hinder research on certain biotic groups, rendering them unpopular relative to others.


Philosophical Transactions of the Royal Society B | 2016

The effects of climatic fluctuations and extreme events on running water ecosystems

Guy Woodward; Núria Bonada; Lee E. Brown; Russell G. Death; Isabelle Durance; Clare Gray; Sally Hladyz; Mark E. Ledger; Alexander M. Milner; Stephen James Ormerod; Ross M. Thompson; Samraat Pawar

Most research on the effects of environmental change in freshwaters has focused on incremental changes in average conditions, rather than fluctuations or extreme events such as heatwaves, cold snaps, droughts, floods or wildfires, which may have even more profound consequences. Such events are commonly predicted to increase in frequency, intensity and duration with global climate change, with many systems being exposed to conditions with no recent historical precedent. We propose a mechanistic framework for predicting potential impacts of environmental fluctuations on running-water ecosystems by scaling up effects of fluctuations from individuals to entire ecosystems. This framework requires integration of four key components: effects of the environment on individual metabolism, metabolic and biomechanical constraints on fluctuating species interactions, assembly dynamics of local food webs, and mapping the dynamics of the meta-community onto ecosystem function. We illustrate the framework by developing a mathematical model of environmental fluctuations on dynamically assembling food webs. We highlight (currently limited) empirical evidence for emerging insights and theoretical predictions. For example, widely supported predictions about the effects of environmental fluctuations are: high vulnerability of species with high per capita metabolic demands such as large-bodied ones at the top of food webs; simplification of food web network structure and impaired energetic transfer efficiency; and reduced resilience and top-down relative to bottom-up regulation of food web and ecosystem processes. We conclude by identifying key questions and challenges that need to be addressed to develop more accurate and predictive bio-assessments of the effects of fluctuations, and implications of fluctuations for management practices in an increasingly uncertain world.


The American Naturalist | 2016

Real versus Artificial Variation in the Thermal Sensitivity of Biological Traits.

Samraat Pawar; Anthony I. Dell; Van M. Savage; Jennifer L. Knies

Whether the thermal sensitivity of an organism’s traits follows the simple Boltzmann-Arrhenius model remains a contentious issue that centers around consideration of its operational temperature range and whether the sensitivity corresponds to one or a few underlying rate-limiting enzymes. Resolving this issue is crucial, because mechanistic models for temperature dependence of traits are required to predict the biological effects of climate change. Here, by combining theory with data on 1,085 thermal responses from a wide range of traits and organisms, we show that substantial variation in thermal sensitivity (activation energy) estimates can arise simply because of variation in the range of measured temperatures. Furthermore, when thermal responses deviate systematically from the Boltzmann-Arrhenius model, variation in measured temperature ranges across studies can bias estimated activation energy distributions toward higher mean, median, variance, and skewness. Remarkably, this bias alone can yield activation energies that encompass the range expected from biochemical reactions (from ∼0.2 to 1.2 eV), making it difficult to establish whether a single activation energy appropriately captures thermal sensitivity. We provide guidelines and a simple equation for partially correcting for such artifacts. Our results have important implications for understanding the mechanistic basis of thermal responses of biological traits and for accurately modeling effects of variation in thermal sensitivity on responses of individuals, populations, and ecological communities to changing climatic temperatures.


BMC Ecology | 2004

Recovery of frog and lizard communities following primary habitat alteration in Mizoram, Northeast India

Samraat Pawar; Gopal S. Rawat; B.C. Choudhury

BackgroundCommunity recovery following primary habitat alteration can provide tests for various hypotheses in ecology and conservation biology. Prominent among these are questions related to the manner and rate of community assembly after habitat perturbation. Here we use space-for-time substitution to analyse frog and lizard community assembly along two gradients of habitat recovery following slash and burn agriculture (jhum) in Mizoram, Northeast India. One recovery gradient undergoes natural succession to mature tropical rainforest, while the other involves plantation of jhum fallows with teak Tectona grandis monoculture.ResultsFrog and lizard communities accumulated species steadily during natural succession, attaining characteristics similar to those from mature forest after 30 years of regeneration. Lizards showed higher turnover and lower augmentation of species relative to frogs. Niche based classification identified a number of guilds, some of which contained both frogs and lizards. Successional change in species richness was due to increase in the number of guilds as well as the number of species per guild. Phylogenetic structure increased with succession for some guilds. Communities along the teak plantation gradient on the other hand, did not show any sign of change with chronosere age. Factor analysis revealed sets of habitat variables that independently determined changes in community and guild composition during habitat recovery.ConclusionsThe timescale of frog and lizard community recovery was comparable with that reported by previous studies on different faunal groups in other tropical regions. Both communities converged on primary habitat attributes during natural vegetation succession, the recovery being driven by deterministic, nonlinear changes in habitat characteristics. On the other hand, very little faunal recovery was seen even in relatively old teak plantation. In general, tree monocultures are unlikely to support recovery of natural forest communities and the combined effect of shortened jhum cultivation cycles and plantation forestry could result in landscapes without mature forest. Lack of source pools of genetic diversity will then lead to altered vegetation succession and faunal community reassembly. It is therefore important that the value of habitat mosaics containing even patches of primary forest and successional secondary habitats be taken into account.


Ecology | 2015

Understanding uncertainty in temperature effects on vector-borne disease: a Bayesian approach

Leah R. Johnson; Tal Ben-Horin; Kevin D. Lafferty; Amy McNally; Erin A. Mordecai; Krijn P. Paaijmans; Samraat Pawar; Sadie J. Ryan

Extrinsic environmental factors influence the distribution and population dynamics of many organisms, including insects that are of concern for human health and agriculture. This is particularly true for vector-borne infectious diseases like malaria, which is a major source of morbidity and mortality in humans. Understanding the mechanistic links between environment and population processes for these diseases is key to predicting the consequences of climate change on transmission and for developing effective interventions. An important measure of the intensity of disease transmission is the reproductive number R0. However, understanding the mechanisms linking R0 and temperature, an environmental factor driving disease risk, can be challenging because the data available for parameterization are often poor. To address this, we show how a Bayesian approach can help identify critical uncertainties in components of R0 and how this uncertainty is propagated into the estimate of R0. Most notably, we find that different parameters dominate the uncertainty at different temperature regimes: bite rate from 15 degrees C to 25 degrees C; fecundity across all temperatures, but especially approximately 25-32 degrees C; mortality from 20 degrees C to 30 degrees C; parasite development rate at degrees 15-16 degrees C and again at approximately 33-35 degrees C. Focusing empirical studies on these parameters and corresponding temperature ranges would be the most efficient way to improve estimates of R0. While we focus on malaria, our methods apply to improving process-based models more generally, including epidemiological, physiological niche, and species distribution models.


Journal of Biosciences | 2006

Phylogenetic tests of distribution patterns in South Asia: towards an integrative approach

Sayantan Biswas; Samraat Pawar

The last four decades have seen an increasing integration of phylogenetics and biogeography. However, a dearth of phylogenetic studies has precluded such biogeographic analyses in South Asia until recently. Noting the increase in phylogenetic research and interest in phylogenetic biogeography in the region, we outline an integrative framework for studying taxon distribution patterns. While doing so, we pay particular attention to challenges posed by the complex geological and ecological history of the region, and the differences in distribution across taxonomic groups. We outline and compare three widely used phylogenetic biogeographic approaches: topology-based methods (TBMs), pattern-based methods (PBMs) and event-based methods (EBMs). TBMs lack a quantitative framework and utilize only part of the available phylogenetic information. Hence, they are mainly suited for preliminary enquiries. Both PBMs and EBMs have a quantitative framework, but we consider the latter to be particularly suited to the South Asian context since they consider multiple biogeographic processes explicitly, and can accommodate a reticulated history of areas. As an illustration, we present a biogeographic analysis of endemic Sri Lankan agamid lizards. The results provide insights into the relative importance of multiple processes and specific zones in the radiation of two speciose lizard clades.


Aquatic Functional Biodiversity#R##N#An Ecological and Evolutionary Perspective | 2015

From Metabolic Constraints on Individuals to the Dynamics of Ecosystems

Samraat Pawar; Anthony I. Dell; Van M. Savage

A major challenge in biology is to predict eco-evolutionary dynamics—coupled changes in the ecological dynamics of population density and the evolution of phenotypic (functional trait) variation within and between species—of entire communities and ecosystems. Although mathematical and computational tools allow eco-evolutionary dynamics to be simulated, it is difficult to isolate underlying mechanisms and therefore establish if simulated dynamics are relevant to the real world where the physical environment changes constantly over space and time. We argue that this problem can be resolved, or at least simplified, by first quantifying biomechanical and metabolic constraints on individual organisms, and then scaling these constraints up though ecological interactions to communities. This approach is logical also because environmental fluctuations affect ecosystems through their direct impacts on the fitness of individual organisms. We highlight recent theoretical and empirical advances toward the development of a mechanistic and metabolic-based understanding of trophic interactions and their eco-evolutionary consequences. In particular, we show how a metabolic theory of species interactions can naturally capture the ubiquitous effects of environmental temperature and body size constraints on community dynamics. Nevertheless, this theory is very much a work in progress, and we identify a number of important hurdles that stand in the way of a general, mechanistic understanding of the eco-evolutionary dynamics of aquatic ecosystems.

Collaboration


Dive into the Samraat Pawar's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Van M. Savage

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Amy McNally

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Leah R. Johnson

University of South Florida

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Guy Woodward

Imperial College London

View shared research outputs
Top Co-Authors

Avatar

Sofía Sal

Imperial College London

View shared research outputs
Researchain Logo
Decentralizing Knowledge