Samson Mukaratirwa
University of KwaZulu-Natal
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Samson Mukaratirwa.
Journal of Helminthology | 2002
G. Chingwena; Samson Mukaratirwa; T.K. Kristensen; M. Chimbari
Between November 1998 and October 2000, freshwater snails were collected monthly from the highveld and lowveld areas of Zimbabwe to determine the occurrence of larval trematodes. A total of 13,789 snails, representing ten species, were collected from 21 sites and 916 (6.6%) harboured patent trematode infections. Eight morphologically distinguishable types of cercariae were identified. Bulinus tropicus had the highest overall prevalence of infection (13.1%). The echinostome was the most common type of cercaria recovered, contributing 38.2% of all infections. Schistosoma cercariae were recovered mainly from the highveld and comprised 8.0% of all infections. Amphistome cercariae contributed 37.6% of all infections and were recorded from both the highveld and lowveld areas with a peak prevalence occurring during the post-rainy period (March-May). The main intermediate host for amphistomes was B. tropicus. Infections in B. globosus, B. forskalii and Biomphalaria pfeifferi with amphistome cercariae are new records for Zimbabwe.
Acta Tropica | 2013
Samson Mukaratirwa; Louis J. La Grange; Davies M. Pfukenyi
The aim of this review is to provide information on Trichinella infection in humans, livestock and wildlife in sub-Saharan Africa mainly focusing on geographical distribution of species/genotypes, biology, host range, life cycles and to identify research gaps. Trichinella britovi, Trichinella nelsoni and Trichinella zimbabwensis and one genotype (Trichinella T8) are known to occur in sub-Saharan Africa. Distinct geographic ranges with overlapping of some taxa in some areas have been observed. Genetic variants of T. nelsoni has been reported to occur among parasites originating from Eastern and Southern Africa and sequence heterogeneity also occurs among T. zimbabwensis isolates originating from different regions of Zimbabwe and South Africa. Field observations so far indicate that sylvatic Trichinella infections in the region are common in carnivores (mammals and reptiles) and to a lesser extent in omnivores. Cannibalism, scavenging and predation appear to be the most important routes of transmission and maintenance of the sylvatic cycles of the Trichinella taxa. To date, human trichinellosis has been documented in only four sub-Saharan countries (8.7%, 4/46). Bushpigs and warthogs have been the source of human infection with T. britovi and T. nelsoni being the aetiological agents. An increase in bushmeat trade and the creation of Transfrontier Conservation Areas (TFCAs) may have increased the risk of human trichinellosis in the region. With the creation of TFCAs in the region, sampling of wildlife hosts from protected areas of most sub-Sahara African countries is required to fully map the distribution of Trichinella species/genotypes in this region. More structured field surveys are still needed to determine the sylvatic host distribution of the different Trichinella taxa. Biological data of the Trichinella taxa in both wild and domestic animals of sub-Saharan Africa is very limited and further research is required.
South African Medical Journal | 2011
Colleen E. Archer; Christopher C. Appleton; Samson Mukaratirwa; K J Hope
A study of the parasites of invasive rats in the eThekwini Municipality of KwaZulu-Natal has led to this first report of Angiostrongylus (Parastrongylus) cantonensis, commonly known as the rat lung worm, in South Africa. A. cantonensis is clearly endemic in this region and probably also in other areas of South Africa. There are a few reports of this nematode from Africa (excluding South Africa): in rats and snails in Egypt (Fouad and Abdulla, 1978), in snails in Nigeria (Sowemimo and Asaolur, 2004), and a human case from Ivory Coast (1980). As humans are accidental hosts, the parasite cannot complete its life cycle, and immature worms lodge in the central nervous system where they elicit a condition known as eosinophilic meningitis.
Journal of Parasitology | 2002
Givemore Chingwena; Samson Mukaratirwa; Thomas K. Kristensen; Moses J. Chimbari
The susceptibility of Bulinus tropicus, B. globosus, Biomphalaria pfeifferi, Lymnaea natalensis, and Melanoides tuberculata to Calicophoron microbothrium was examined. Bulinus tropicus had the highest prevalence (65.0%), followed by B. pfeifferi (37.5%), B. globosus (6.8%), and M. tuberculata (5.9%). Lymnaea natalensis was refractory to infection. Bulinus tropicus snails infected with C. microbothrium alone or coinfected with either Schistosoma haematobium or S. mattheei 0, 7, 14, and 21 days after exposure to C. microbothrium produced C. microbothrium cercariae only.
Parasites & Vectors | 2015
Uffe Christian Braae; Christopher F.L. Saarnak; Samson Mukaratirwa; Brecht Devleesschauwer; Pascal Magnussen; Maria Vang Johansen
BackgroundThis study aimed to map the distribution of Taenia solium taeniosis/cysticercosis and the co-distribution with schistosomiasis in Africa. These two major neglected tropical diseases are presumed to be widely distributed in Africa, but currently the level of co-distribution is unclear.MethodsA literature search on T. solium taeniosis/cysticercosis was performed to compile all known studies on the presence of T. solium and apparent prevalence of taeniosis and porcine cysticercosis in Africa. Studies were geo-referenced using an online gazetteer. A Bayesian framework was used to combine the epidemiological data on the apparent prevalence with external information on test characteristics to estimate informed district-level prevalence of taeniosis and porcine cysticercosis. Districts with T. solium taeniosis/cysticercosis presence were cross-referenced with the Global Neglected Tropical Diseases Database for schistosomiasis presence.ResultsThe search strategies identified 141 reports of T. solium in Africa from 1985 to 2014 from a total of 476 districts in 29 countries, 20 with porcine cysticercosis, 22 with human cysticercosis, and 16 with taeniosis, in addition to 2 countries identified from OIE reports. All 31 countries were considered, on national scale, to have co-distribution with schistosomiasis. Presence of both parasites was confirmed in 124 districts in 17 countries. The informed prevalence of taeniosis and porcine cysticercosis were estimated for 14 and 41 districts in 10 and 13 countries, respectively.ConclusionsWith the paucity of data, T. solium infection is grossly under-reported and expected to be more widespread than this study suggests. In areas where co-distribution occurs there is a need for increased emphasis on evaluation of integrated intervention approaches for these two helminth infections and allocation of resources for evaluating the extent of adverse effects caused by mass drug administration.
Parasites & Vectors | 2014
Ulrik B. Pedersen; Martin Stendel; Nicholas Midzi; Takafira Mduluza; White Soko; Anna-Sofie Stensgaard; Birgitte J. Vennervald; Samson Mukaratirwa; Thomas K. Kristensen
BackgroundFreshwater snails are intermediate hosts for a number of trematodes of which some are of medical and veterinary importance. The trematodes rely on specific species of snails to complete their life cycle; hence the ecology of the snails is a key element in transmission of the parasites. More than 200 million people are infected with schistosomes of which 95% live in sub-Saharan Africa and many more are living in areas where transmission is on-going. Human infection with the Fasciola parasite, usually considered more of veterinary concern, has recently been recognised as a human health problem. Many countries have implemented health programmes to reduce morbidity and prevalence of schistosomiasis, and control programmes to mitigate food-borne fascioliasis. As these programmes are resource demanding, baseline information on disease prevalence and distribution becomes of great importance. Such information can be made available and put into practice through maps depicting spatial distribution of the intermediate snail hosts.MethodsA biology driven model for the freshwater snails Bulinus globosus, Biomphalaria pfeifferi and Lymnaea natalensis was used to make predictions of snail habitat suitability by including potential underlying environmental and climatic drivers. The snail observation data originated from a nationwide survey in Zimbabwe and the prediction model was parameterised with a high resolution Regional Climate Model. Georeferenced prevalence data on urinary and intestinal schistosomiasis and fascioliasis was used to calibrate the snail habitat suitability predictions to produce binary maps of snail presence and absence.ResultsPredicted snail habitat suitability across Zimbabwe, as well as the spatial distribution of snails, is reported for three time slices representative for present (1980-1999) and future climate (2046-2065 and 2080-2099).ConclusionsIt is shown from the current study that snail habitat suitability is highly variable in Zimbabwe, with distinct high- and low- suitability areas and that temperature may be the main driving factor. It is concluded that future climate change in Zimbabwe may cause a reduced spatial distribution of suitable habitat of host snails with a probable exception of Bi. pfeifferi, the intermediate host for intestinal schistosomiasis that may increase around 2055 before declining towards 2100.
Journal of Diabetes | 2016
Andrew Mukundwa; Samson Mukaratirwa; Bubuya Masola
The pant‐derived triterpene oleanolic acid (OA) has been shown to have antidiabetic effects, but its action on the insulin signaling cascade has not been fully elucidated. The aim of the present study was to investigate the effects of OA on aspects of the phosphatidylinositol 3‐kinase/Akt insulin signaling cascade in skeletal muscle of streptozotocin‐induced type 1 diabetic male Sprague‐Dawley rats.
Acta Tropica | 2016
Tawanda Manyangadze; Moses J. Chimbari; Michael Gebreslasie; Samson Mukaratirwa
Schistosomiasis is a snail-transmitted parasitic disease endemic in most rural areas of sub-Saharan Africa. However, the currently used prediction models fail to capture the focal nature of its transmission due to the macro-geographical levels considered and paucity of data at local levels. This study determined the spatial distribution of Schistosoma haematobium and related risk factors in Ndumo area, uMkhanyakude District, KwaZulu-Natal province in South Africa. A sample of 435 schoolchildren between 10 to 15 years old from 10 primary schools was screened for S. haematobium using the filtration method. Getis-Ord Gi* and Bernoulli model were used to determine the hotspots of S. haematobium infection intensity based on their spatial distribution. Semiparametric-Geographically Weighted Regression (s-GWR) model was used to predict and analyse the spatial distribution of S. haematobium in relation to environmental and socio-economic factors. We confirmed that schistosomiasis transmission is focal in nature as indicated by significant S. haematobium cases and infection intensity clusters (p<0.05) in the study area. The s-GWR model performance was low (R(2)=0.45) and its residuals did not show autocorrelation (Morans I=-0.001; z-score=0.003 and p-value=0.997) indicating that the model was correctly spelled. The s-GWR model also indicated that the coefficients for some of the socio-economic variables such as distances of households from operational piped water collection points, distance from open water sources, religion, toilet use, household head and places of bath and laundry significantly (t-values+/-1.96) varied across the landscape thereby determining the variation of S. haematobium infection intensity. This evidence may be used for control and management of the disease at micro scale. However, there is need for further research into more factors that may improve the performance of the s-GWR models in determining the local variation of S. haematobium infection intensity.
Parasites & Vectors | 2016
Tawanda Manyangadze; Moses J. Chimbari; Michael Gebreslasie; Pietro Ceccato; Samson Mukaratirwa
BackgroundSchistosomiasis is a snail-borne disease endemic in sub-Saharan Africa transmitted by freshwater snails. The distribution of schistosomiasis coincides with that of the intermediate hosts as determined by climatic and environmental factors. The aim of this paper was to model the spatial and seasonal distribution of suitable habitats for Bulinus globosus and Biomphalaria pfeifferi snail species (intermediate hosts for Schistosoma haematobium and Schistosoma mansoni, respectively) in the Ndumo area of uMkhanyakude district, South Africa.MethodsMaximum Entropy (Maxent) modelling technique was used to predict the distribution of suitable habitats for B. globosus and B. pfeifferi using presence-only datasets with ≥ 5 and ≤ 12 sampling points in different seasons. Precipitation, maximum and minimum temperatures, Normalised Difference Vegetation Index (NDVI), Normalised Difference Water Index (NDWI), pH, slope and Enhanced Vegetation Index (EVI) were the background variables in the Maxent models. The models were validated using the area under the curve (AUC) and omission rate.ResultsThe predicted suitable habitats for intermediate snail hosts varied with seasons. The AUC for models in all seasons ranged from 0.71 to 1 and the prediction rates were between 0.8 and 0.9. Although B. globosus was found at more localities in the Ndumo area, there was also evidence of cohabiting with B. pfiefferi at some of the locations. NDWI had significant contribution to the models in all seasons.ConclusionThe Maxent model is robust in snail habitat suitability modelling even with small dataset of presence-only sampling sites. Application of the methods and design used in this study may be useful in developing a control and management programme for schistosomiasis in the Ndumo area.
Journal of The South African Veterinary Association-tydskrif Van Die Suid-afrikaanse Veterinere Vereniging | 2014
Simbarashe Chitanga; Holly Gaff; Samson Mukaratirwa
The aim of this communication is to provide preliminary information on the tick-borne pathogens of potential zoonotic importance present in southern Africa, mainly focusing on their geographical distribution and host range, and to identify research gaps. The following tick-borne zoonoses have been reported to occur in southern Africa based mainly on case reports: Crimean-Congo haemorrhagic fever caused by Crimean-Congo haemorrhagic fever virus; ehrlichiosis caused by Ehrlichia ruminantium, Ehrlichia canis and Anaplasma phagocytophilum; babesiosis caused by Babesia microti; relapsing fever caused by Borrelia duttonii and rickettsioses caused by Rickettsia africae, Rickettsia aeschlimannii and Rickettsia conorii. The epidemiological factors influencing their occurrence are briefly reviewed.