Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Samuel Aparicio is active.

Publication


Featured researches published by Samuel Aparicio.


Nature | 2012

The genomic and transcriptomic architecture of 2,000 breast tumours reveals novel subgroups

Christina Curtis; Sohrab P. Shah; Suet-Feung Chin; Gulisa Turashvili; Oscar M. Rueda; Mark J. Dunning; Doug Speed; Andy G. Lynch; Shamith Samarajiwa; Yinyin Yuan; Stefan Gräf; Gavin Ha; Gholamreza Haffari; Ali Bashashati; Roslin Russell; Steven McKinney; Anita Langerød; Andrew T. Green; Elena Provenzano; G.C. Wishart; Sarah Pinder; Peter H. Watson; Florian Markowetz; Leigh Murphy; Ian O. Ellis; Arnie Purushotham; Anne Lise Børresen-Dale; James D. Brenton; Simon Tavaré; Carlos Caldas

The elucidation of breast cancer subgroups and their molecular drivers requires integrated views of the genome and transcriptome from representative numbers of patients. We present an integrated analysis of copy number and gene expression in a discovery and validation set of 997 and 995 primary breast tumours, respectively, with long-term clinical follow-up. Inherited variants (copy number variants and single nucleotide polymorphisms) and acquired somatic copy number aberrations (CNAs) were associated with expression in ∼40% of genes, with the landscape dominated by cis- and trans-acting CNAs. By delineating expression outlier genes driven in cis by CNAs, we identified putative cancer genes, including deletions in PPP2R2A, MTAP and MAP2K4. Unsupervised analysis of paired DNA–RNA profiles revealed novel subgroups with distinct clinical outcomes, which reproduced in the validation cohort. These include a high-risk, oestrogen-receptor-positive 11q13/14 cis-acting subgroup and a favourable prognosis subgroup devoid of CNAs. Trans-acting aberration hotspots were found to modulate subgroup-specific gene networks, including a TCR deletion-mediated adaptive immune response in the ‘CNA-devoid’ subgroup and a basal-specific chromosome 5 deletion-associated mitotic network. Our results provide a novel molecular stratification of the breast cancer population, derived from the impact of somatic CNAs on the transcriptome.


Nature | 2000

Eomesodermin is required for mouse trophoblast development and mesoderm formation.

Andreas Russ; Sigrid Wattler; William H. Colledge; Samuel Aparicio; Mark B. L. Carlton; Jonathan J.H. Pearce; Sheila C. Barton; M. Azim Surani; Kenneth Ryan; Michael Nehls; Valerie Wilson; Martin J. Evans

The earliest cell fate decision in the mammalian embryo separates the extra-embryonic trophoblast lineage, which forms the fetal portion of the placenta, from the embryonic cell lineages. The body plan of the embryo proper is established only later at gastrulation, when the pluripotent epiblast gives rise to the germ layers ectoderm, mesoderm and endoderm. Here we show that the T-box gene Eomesodermin performs essential functions in both trophoblast development and gastrulation. Mouse embryos lacking Eomesodermin arrest at the blastocyst stage. Mutant trophoectoderm does not differentiate into trophoblast, indicating that Eomesodermin may be required for the development of trophoblast stem cells. In the embryo proper, Eomesodermin is essential for mesoderm formation. Although the specification of the anterior–posterior axis and the initial response to mesoderm-inducing signals is intact in mutant epiblasts, the prospective mesodermal cells are not recruited into the primitive streak. Our results indicate that Eomesodermin defines a conserved molecular pathway controlling the morphogenetic movements of germ layer formation and has acquired a new function in mammals in the differentiation of trophoblast.


Cell | 2003

EMSY Links the BRCA2 Pathway to Sporadic Breast and Ovarian Cancer

Luke Hughes-Davies; David Huntsman; Margarida Ruas; Francois Fuks; Jacqueline M. Bye; Suet-Feung Chin; Jonathon Milner; Lindsay Brown; Forrest D. Hsu; Blake Gilks; Torsten O. Nielsen; Michael Schulzer; Stephen Chia; Joseph Ragaz; Anthony P. Cahn; Lori Linger; Hilal Ozdag; Ekaterina S. Jordanova; Edward Schuuring; David S. Yu; Ashok R. Venkitaraman; Bruce A.J. Ponder; Aidan J. Doherty; Samuel Aparicio; David R. Bentley; Charles Theillet; Chris P. Ponting; Carlos Caldas; Tony Kouzarides

The BRCA2 gene is mutated in familial breast and ovarian cancer, and its product is implicated in DNA repair and transcriptional regulation. Here we identify a protein, EMSY, which binds BRCA2 within a region (exon 3) deleted in cancer. EMSY is capable of silencing the activation potential of BRCA2 exon 3, associates with chromatin regulators HP1beta and BS69, and localizes to sites of repair following DNA damage. EMSY maps to chromosome 11q13.5, a region known to be involved in breast and ovarian cancer. We show that the EMSY gene is amplified almost exclusively in sporadic breast cancer (13%) and higher-grade ovarian cancer (17%). In addition, EMSY amplification is associated with worse survival, particularly in node-negative breast cancer, suggesting that it may be of prognostic value. The remarkable clinical overlap between sporadic EMSY amplification and familial BRCA2 deletion implicates a BRCA2 pathway in sporadic breast and ovarian cancer.


Trends in Genetics | 2000

Vertebrate evolution: recent perspectives from fish

Samuel Aparicio

Recent progress in understanding the evolution of vertebrate genomes has been rapid, and previous notions that all such genomes could be regarded as equivalent in their gene content have been rendered outdated. This notion, often embodied in the representation that vertebrates possess four Hox complexes, still appears in contemporary textbooks of developmental biology. Recent data from the genomes of teleost fish show that this assumption is untrue and suggest that interesting situations might arise from the apparent proliferation of genes among fish.


Genome Biology | 2014

Genome-driven integrated classification of breast cancer validated in over 7,500 samples

H. Raza Ali; Oscar M. Rueda; Suet-Feung Chin; Christina Curtis; Mark J. Dunning; Samuel Aparicio; Carlos Caldas

BackgroundIntClust is a classification of breast cancer comprising 10 subtypes based on molecular drivers identified through the integration of genomic and transcriptomic data from 1,000 breast tumors and validated in a further 1,000. We present a reliable method for subtyping breast tumors into the IntClust subtypes based on gene expression and demonstrate the clinical and biological validity of the IntClust classification.ResultsWe developed a gene expression-based approach for classifying breast tumors into the ten IntClust subtypes by using the ensemble profile of the index discovery dataset. We evaluate this approach in 983 independent samples for which the combined copy-number and gene expression IntClust classification was available. Only 24 samples are discordantly classified. Next, we compile a consolidated external dataset composed of a further 7,544 breast tumors. We use our approach to classify all samples into the IntClust subtypes. All ten subtypes are observable in most studies at comparable frequencies. The IntClust subtypes are significantly associated with relapse-free survival and recapitulate patterns of survival observed previously. In studies of neo-adjuvant chemotherapy, IntClust reveals distinct patterns of chemosensitivity. Finally, patterns of expression of genomic drivers reported by TCGA (The Cancer Genome Atlas) are better explained by IntClust as compared to the PAM50 classifier.ConclusionsIntClust subtypes are reproducible in a large meta-analysis, show clinical validity and best capture variation in genomic drivers. IntClust is a driver-based breast cancer classification and is likely to become increasingly relevant as more targeted biological therapies become available.


Nature | 2002

Cancer: The molecular outlook

Carlos Caldas; Samuel Aparicio

Many breast-cancer patients receive unnecessary treatment for possible tumour spread after the removal of a primary tumour. Molecular profiling should offer more accurate predictions of who needs such treatment.


Experimental and Molecular Pathology | 2012

Nucleic acid quantity and quality from paraffin blocks: Defining optimal fixation, processing and DNA/RNA extraction techniques

Gulisa Turashvili; Winnie Yang; Steven McKinney; Steve E. Kalloger; Nadia Gale; Ying Ng; Katie Chow; Lynda Bell; Julie Lorette; Melinda Carrier; Margaret Luk; Samuel Aparicio; David Huntsman; Stephen Yip

Although the extraction and analysis of nucleic acids from formalin-fixed paraffin-embedded tissues is a routine and growing part of pathology practice, no generally accepted recommendations exist to guide laboratories in their selection of tissue fixation, processing and DNA/RNA extraction techniques. The aim of this study was to determine how fixation method and length, paraffin embedding, processing conditions and nucleic acid extraction methods affect quality and quantity of DNA and RNA, and their performance in downstream applications. Nine tissue samples were subjected to freezing, fixation in formalin for <24 h and 7 days followed by conventional processing, and fixation in molecular fixative for <24 h and 7 days followed by rapid processing. DNA and RNA were isolated using in-house extraction and commercial kits, and assessed by PCR reactions for amplicons with varying sizes ranging from 268 to 1327 bp and one-step RT-PCR for 621 bp and 816 bp amplicons of housekeeping genes. Molecular fixative (MF) appeared to perform well under nearly all circumstances (extraction methods, fixation lengths and longer amplicons), often performing as well as frozen samples. Formalin fixation generally performed well only for shorter length amplicons and short fixation (<24 h). WaxFree kit showed consistently higher success rates for DNA and poorer rates for RNA. RecoverAll kit generally performed suboptimally in combination with prolonged formalin fixation. In conclusion, the Molecular Fixative regardless of fixation length, and the rapid tissue processing system were able to preserve large DNA and RNA fragments in paraffin blocks, making these techniques preferable for use in downstream molecular diagnostic assays.


BMC Cancer | 2009

Inter-observer reproducibility of HER2 immunohistochemical assessment and concordance with fluorescent in situ hybridization (FISH): pathologist assessment compared to quantitative image analysis.

Gulisa Turashvili; Samuel Leung; Dmitry Turbin; Kelli Montgomery; Blake Gilks; Robert B. West; Melinda Carrier; David Huntsman; Samuel Aparicio

BackgroundIn breast cancer patients, HER2 overexpression is routinely assessed by immunohistochemistry (IHC) and equivocal cases are subject to fluorescent in situ hybridization (FISH). Our study compares HER2 scoring by histopathologists with automated quantitation of staining, and determines the concordance of IHC scores with FISH results.MethodsA tissue microarray was constructed from 1,212 invasive breast carcinoma cases with linked treatment and outcome information. IHC slides were semi-quantitatively scored by two independent pathologists on a range of 0 to 3+, and also analyzed with an Ariol automated system by two operators. 616 cases were scorable by both IHC and FISH.ResultsUsing data from unequivocal positive (3+) or negative (0, 1+) results, both visual and automated scores were highly consistent: there was excellent concordance between two pathologists (kappa = 1.000, 95% CI: 1-1), between two machines (kappa = 1.000, 95% CI: 1-1), and between both visual and both machine scores (kappa = 0.898, 95% CI: 0.775–0.979). Two pathologists successfully distinguished negative, positive and equivocal cases (kappa = 0.929, 95% CI: 0.909–0.946), with excellent agreement with machine 1 scores (kappa = 0.835, 95% CI: 0.806–0.862; kappa = 0.837, 95% CI: 0.81–0.862), and good agreement with machine 2 scores (kappa = 0.698, 95% CI: 0.6723–0.723; kappa = 0.709, 95% CI: 0.684–0.732), whereas the two machines showed good agreement (kappa = 0.806, 95% CI: 0.785–0.826). When comparing categorized IHC scores and FISH results, the agreement was excellent for visual 1 (kappa = 0.814, 95% CI: 0.768–0.856), good for visual 2 (kappa = 0.763, 95% CI: 0.712–0.81) and machine 1 (kappa = 0.665, 95% CI: 0.609–0.718), and moderate for machine 2 (kappa = 0.535, 95% CI: 0.485–0.584).ConclusionA fully automated image analysis system run by an experienced operator can provide results consistent with visual HER2 scoring. Further development of such systems will likely improve the accuracy of detection and categorization of membranous staining, making this technique suitable for use in quality assurance programs and eventually in clinical practice.


Oncogene | 2007

p300 is required for orderly G1/S transition in human cancer cells.

Iyer Ng; Jian Xian; Suet-Feung Chin; Andrew J. Bannister; Yataro Daigo; Samuel Aparicio; Tony Kouzarides; Carlos Caldas

The role of the transcriptional coactivator p300 in cell cycle control has not been analysed in detail due to the lack of appropriate experimental systems. We have now examined cell cycle progression of p300-deficient cancer cell lines, where p300 was disrupted either by gene targeting (p300− cells) or knocked down using RNAi. Despite significant proliferation defects under normal growth conditions, p300-deficient cells progressed rapidly through G1 with premature S-phase entry. Accelerated G1/S transition was associated with early retinoblastoma (RB) hyperphosphorylation and activation of E2F targets. The p300-acetylase activity was dispensable since expression of a HAT-deficient p300 mutant reversed these changes. Co-immunoprecipitation showed p300/RB interaction occurs in vivo during G1, and this interaction has two peaks: in early G1 with unphosphorylated RB and in late G1 with phosphorylated RB. In vitro kinase assays showed that p300 directly inhibits cdk6-mediated RB phosphorylation, suggesting p300 acts in early G1 to prevent RB hyperphosphorylation and delay premature S-phase entry. Paradoxically, continued cycling of p300− cells despite prolonged serum depletion was observed, and this occurred in association with persistent RB hyperphosphorylation. Altogether, these results suggest that p300 has an important role in G1/S control, possibly by modulating RB phosphorylation.


BMC Genomics | 2004

Expression microarray reproducibility is improved by optimising purification steps in RNA amplification and labelling.

Ali Naderi; Ahmed Ashour Ahmed; Nuno L. Barbosa-Morais; Samuel Aparicio; James D. Brenton; Carlos Caldas

BackgroundExpression microarrays have evolved into a powerful tool with great potential for clinical application and therefore reliability of data is essential. RNA amplification is used when the amount of starting material is scarce, as is frequently the case with clinical samples. Purification steps are critical in RNA amplification and labelling protocols, and there is a lack of sufficient data to validate and optimise the process.ResultsHere the purification steps involved in the protocol for indirect labelling of amplified RNA are evaluated and the experimentally determined best method for each step with respect to yield, purity, size distribution of the transcripts, and dye coupling is used to generate targets tested in replicate hybridisations. DNase treatment of diluted total RNA samples followed by phenol extraction is the optimal way to remove genomic DNA contamination. Purification of double-stranded cDNA is best achieved by phenol extraction followed by isopropanol precipitation at room temperature. Extraction with guanidinium-phenol and Lithium Chloride precipitation are the optimal methods for purification of amplified RNA and labelled aRNA respectively.ConclusionThis protocol provides targets that generate highly reproducible microarray data with good representation of transcripts across the size spectrum and a coefficient of repeatability significantly better than that reported previously.

Collaboration


Dive into the Samuel Aparicio's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Steven McKinney

University of British Columbia

View shared research outputs
Top Co-Authors

Avatar

David Huntsman

University of British Columbia

View shared research outputs
Top Co-Authors

Avatar

Gulisa Turashvili

University of Southern California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Karen A. Gelmon

University of British Columbia

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Blake Gilks

University of British Columbia

View shared research outputs
Top Co-Authors

Avatar

Peter Watson

BC Cancer Research Centre

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge