Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Samuel Burer is active.

Publication


Featured researches published by Samuel Burer.


Mathematical Programming | 2003

A nonlinear programming algorithm for solving semidefinite programs via low-rank factorization

Samuel Burer; Renato D. C. Monteiro

Abstract. In this paper, we present a nonlinear programming algorithm for solving semidefinite programs (SDPs) in standard form. The algorithms distinguishing feature is a change of variables that replaces the symmetric, positive semidefinite variable X of the SDP with a rectangular variable R according to the factorization X=RRT. The rank of the factorization, i.e., the number of columns of R, is chosen minimally so as to enhance computational speed while maintaining equivalence with the SDP. Fundamental results concerning the convergence of the algorithm are derived, and encouraging computational results on some large-scale test problems are also presented.


Mathematical Programming | 2009

On the copositive representation of binary and continuous nonconvex quadratic programs

Samuel Burer

In this paper, we model any nonconvex quadratic program having a mix of binary and continuous variables as a linear program over the dual of the cone of copositive matrices. This result can be viewed as an extension of earlier separate results, which have established the copositive representation of a small collection of NP-hard problems. A simplification, which reduces the dimension of the linear conic program, and an extension to complementarity constraints are established, and computational issues are discussed.


Mathematical Programming | 2005

Local Minima and Convergence in Low-Rank Semidefinite Programming

Samuel Burer; Renato D. C. Monteiro

Abstract.The low-rank semidefinite programming problem LRSDPr is a restriction of the semidefinite programming problem SDP in which a bound r is imposed on the rank of X, and it is well known that LRSDPr is equivalent to SDP if r is not too small. In this paper, we classify the local minima of LRSDPr and prove the optimal convergence of a slight variant of the successful, yet experimental, algorithm of Burer and Monteiro [5], which handles LRSDPr via the nonconvex change of variables X=RRT. In addition, for particular problem classes, we describe a practical technique for obtaining lower bounds on the optimal solution value during the execution of the algorithm. Computational results are presented on a set of combinatorial optimization relaxations, including some of the largest quadratic assignment SDPs solved to date.


Siam Journal on Optimization | 2002

Rank-Two Relaxation Heuristics for MAX-CUT and Other Binary Quadratic Programs

Samuel Burer; Renato D. C. Monteiro; Yin Zhang

The Goemans--Williamson randomized algorithm guarantees a high-quality approximation to the MAX-CUT problem, but the cost associated with such an approximation can be excessively high for large-scale problems due to the need for solving an expensive semidefinite relaxation. In order to achieve better practical performance, we propose an alternative, rank-two relaxation and develop a specialized version of the Goemans--Williamson technique. The proposed approach leads to continuous optimization heuristics applicable to MAX-CUT as well as other binary quadratic programs, for example the MAX-BISECTION problem. A computer code based on the rank-two relaxation heuristics is compared with two state-of-the-art semidefinite programming codes that implement the Goemans--Williamson randomized algorithm, as well as with a purely heuristic code for effectively solving a particular MAX-CUT problem arising in physics. Computational results show that the proposed approach is fast and scalable and, more importantly, attains a higher approximation quality in practice than that of the Goemans--Williamson randomized algorithm. An extension to MAX-BISECTION is also discussed, as is an important difference between the proposed approach and the Goemans--Williamson algorithm; namely, that the new approach does not guarantee an upper bound on the MAX-CUT optimal value.


Mathematical Programming | 2008

A finite branch-and-bound algorithm for nonconvex quadratic programming via semidefinite relaxations

Samuel Burer; Dieter Vandenbussche

Existing global optimization techniques for nonconvex quadratic programming (QP) branch by recursively partitioning the convex feasible set and thus generate an infinite number of branch-and-bound nodes. An open question of theoretical interest is how to develop a finite branch-and-bound algorithm for nonconvex QP. One idea, which guarantees a finite number of branching decisions, is to enforce the first-order Karush-Kuhn-Tucker (KKT) conditions through branching. In addition, such an approach naturally yields linear programming (LP) relaxations at each node. However, the LP relaxations are unbounded, a fact that precludes their use. In this paper, we propose and study semidefinite programming relaxations, which are bounded and hence suitable for use with finite KKT-branching. Computational results demonstrate the practical effectiveness of the method, with a particular highlight being that only a small number of nodes are required.


Siam Journal on Optimization | 2006

Solving Lift-and-Project Relaxations of Binary Integer Programs

Samuel Burer; Dieter Vandenbussche

We propose a method for optimizing the lift-and-project relaxations of binary integer programs introduced by Lovasz and Schrijver. In particular, we study both linear and semidefinite relaxations. The key idea is a restructuring of the relaxations, which isolates the complicating constraints and allows for a Lagrangian approach. We detail an enhanced subgradient method and discuss its efficient implementation. Computational results illustrate that our algorithm produces tight bounds more quickly than state-of-the-art linear and semidefinite solvers.


Optimization Methods & Software | 2001

A projected gradient algorithm for solving the maxcut SDP relaxation

Samuel Burer; Renato D. C. Monteiro

In this paper, we present a projected gradient algorithm for solving the semidefinite programming (SDP) relaxation of the maximum cut (maxcut) problem. Coupled with a randomized method, this gives a very efficient approximation algorithm for the maxcut problem. We report computational results comparing our method with two earlier successful methods on problems with dimension up to 7,000.


Mathematical Programming Computation | 2012

Globally solving nonconvex quadratic programming problems via completely positive programming

Jieqiu Chen; Samuel Burer

Nonconvex quadratic programming (QP) is an NP-hard problem that optimizes a general quadratic function over linear constraints. This paper introduces a new global optimization algorithm for this problem, which combines two ideas from the literature—finite branching based on the first-order KKT conditions and polyhedral-semidefinite relaxations of completely positive (or copositive) programs. Through a series of computational experiments comparing the new algorithm with existing codes on a diverse set of test instances, we demonstrate that the new algorithm is an attractive method for globally solving nonconvex QP.


Mathematical Programming | 2002

Maximum stable set formulations and heuristics based on continuous optimization

Samuel Burer; Renato D. C. Monteiro; Yin Zhang

Abstract. The stability number α(G) for a given graph G is the size of a maximum stable set in G. The Lovász theta number provides an upper bound on α(G) and can be computed in polynomial time as the optimal value of the Lovász semidefinite program. In this paper, we show that restricting the matrix variable in the Lovász semidefinite program to be rank-one and rank-two, respectively, yields a pair of continuous, nonlinear optimization problems each having the global optimal value α(G). We propose heuristics for obtaining large stable sets in G based on these new formulations and present computational results indicating the effectiveness of the heuristics.


Mathematical Programming Computation | 2010

Optimizing a polyhedral-semidefinite relaxation of completely positive programs

Samuel Burer

It has recently been shown (Burer, Math Program 120:479–495, 2009) that a large class of NP-hard nonconvex quadratic programs (NQPs) can be modeled as so-called completely positive programs, i.e., the minimization of a linear function over the convex cone of completely positive matrices subject to linear constraints. Such convex programs are NP-hard in general. A basic tractable relaxation is gotten by approximating the completely positive matrices with doubly nonnegative matrices, i.e., matrices which are both nonnegative and positive semidefinite, resulting in a doubly nonnegative program (DNP). Optimizing a DNP, while polynomial, is expensive in practice for interior-point methods. In this paper, we propose a practically efficient decomposition technique, which approximately solves the DNPs while simultaneously producing lower bounds on the original NQP. We illustrate the effectiveness of our approach for solving the basic relaxation of box-constrained NQPs (BoxQPs) and the quadratic assignment problem. For one quadratic assignment instance, a best-known lower bound is obtained. We also incorporate the lower bounds within a branch-and-bound scheme for solving BoxQPs and the quadratic multiple knapsack problem. In particular, to the best of our knowledge, the resulting algorithm for globally solving BoxQPs is the most efficient to date.

Collaboration


Dive into the Samuel Burer's collaboration.

Top Co-Authors

Avatar

Renato D. C. Monteiro

Georgia Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hongbo Dong

Washington State University

View shared research outputs
Top Co-Authors

Avatar

Jon Lee

University of Michigan

View shared research outputs
Researchain Logo
Decentralizing Knowledge