Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Samuel C. C. Chiang is active.

Publication


Featured researches published by Samuel C. C. Chiang.


Immunity | 2015

Cytomegalovirus Infection Drives Adaptive Epigenetic Diversification of NK Cells with Altered Signaling and Effector Function

Heinrich Schlums; Frank Cichocki; Bianca Tesi; Jakob Theorell; Vivien Béziat; Tim D. Holmes; Hongya Han; Samuel C. C. Chiang; Bree Foley; Kristin Mattsson; Stella Larsson; Marie Schaffer; Karl-Johan Malmberg; Hans-Gustaf Ljunggren; Jeffrey S. Miller; Yenan T. Bryceson

The mechanisms underlying human natural killer (NK) cell phenotypic and functional heterogeneity are unknown. Here, we describe the emergence of diverse subsets of human NK cells selectively lacking expression of signaling proteins after human cytomegalovirus (HCMV) infection. The absence of B and myeloid cell-related signaling protein expression in these NK cell subsets correlated with promoter DNA hypermethylation. Genome-wide DNA methylation patterns were strikingly similar between HCMV-associated adaptive NK cells and cytotoxic effector T cells but differed from those of canonical NK cells. Functional interrogation demonstrated altered cytokine responsiveness in adaptive NK cells that was linked to reduced expression of the transcription factor PLZF. Furthermore, subsets of adaptive NK cells demonstrated significantly reduced functional responses to activated autologous T cells. The present results uncover a spectrum of epigenetically unique adaptive NK cell subsets that diversify in response to viral infection and have distinct functional capabilities compared to canonical NK cell subsets.


Blood | 2012

A prospective evaluation of degranulation assays in the rapid diagnosis of familial hemophagocytic syndromes.

Yenan T. Bryceson; Daniela Pende; Andrea Maul-Pavicic; Kimberly Gilmour; Heike Ufheil; Thomas Vraetz; Samuel C. C. Chiang; Stefania Marcenaro; Raffaella Meazza; Ilka Bondzio; Denise Walshe; Gritta Janka; Kai Lehmberg; Karin Beutel; Udo zur Stadt; Nadine Binder; Maurizio Aricò; Lorenzo Moretta; Jan-Inge Henter; Stephan Ehl

Familial hemophagocytic lymphohistiocytosis (FHL) is a life-threatening disorder of immune regulation caused by defects in lymphocyte cytotoxicity. Rapid differentiation of primary, genetic forms from secondary forms of hemophagocytic lymphohistiocytosis (HLH) is crucial for treatment decisions. We prospectively evaluated the performance of degranulation assays based on surface up-regulation of CD107a on natural killer (NK) cells and cytotoxic T lymphocytes in a cohort of 494 patients referred for evaluation for suspected HLH. Seventy-five of 77 patients (97%) with FHL3-5 and 11 of 13 patients (85%) with Griscelli syndrome type 2 or Chediak-Higashi syndrome had abnormal resting NK-cell degranulation. In contrast, NK-cell degranulation was normal in 14 of 16 patients (88%) with X-linked lymphoproliferative disease and in 8 of 14 patients (57%) with FHL2, who were identified by diminished intracellular SLAM-associated protein (SAP), X-linked inhibitor of apoptosis protein (XIAP), and perforin expression, respectively. Among 66 patients with a clinical diagnosis of secondary HLH, 13 of 59 (22%) had abnormal resting NK-cell degranulation, whereas 0 of 43 had abnormal degranulation using IL-2-activated NK cells. Active disease or immunosuppressive therapy did not impair the assay performance. Overall, resting NK-cell degranulation below 5% provided a 96% sensitivity for a genetic degranulation disorder and a specificity of 88%. Therefore, degranulation assays allow a rapid and reliable classification of patients, benefiting treatment decisions.


Journal of Innate Immunity | 2011

Molecular Mechanisms of Natural Killer Cell Activation

Yenan T. Bryceson; Samuel C. C. Chiang; Stephanie Darmanin; Cyril Fauriat; Heinrich Schlums; Jakob Theorell; Stephanie M. Wood

With an array of activating and inhibitory receptors, natural killer (NK) cells can specifically eradicate infected and transformed cells. Target cell killing is achieved through directed release of lytic granules. Recognition of target cells also induces production of chemokines and cytokines that can coordinate immune responses. Upon contact with susceptible cells, a multiplicity of activating receptors can induce signals for adhesion. Engagement of the integrin leukocyte functional antigen-1 mediates firm adhesion, provides signals for granule polarization and orchestrates the structure of an immunological synapse that facilitates efficient target cell killing. Other activating receptors apart from leukocyte functional antigen-1 signal for lytic granule exocytosis, a process that requires overcoming a threshold for activation of phospholipase C-γ, which in turn induces STIM1- and ORAI1-dependent store-operated Ca2+ entry as well as exocytosis mediated by the SNARE-containing protein syntaxin-11 and regulators thereof. Cytokine and chemokine release follows a different secretory pathway which also requires phospholipase C-γ activation and store-operated Ca2+ entry. Recent studies of human NK cells have provided insights into a hierarchy of effector functions that result in graded responses by NK cell populations. Responses display cellular heterogeneity and are influenced by environmental cues. This review highlights recent knowledge gained on the molecular pathways for and regulation of NK cell activation.


Proceedings of the National Academy of Sciences of the United States of America | 2011

ORAI1-mediated calcium influx is required for human cytotoxic lymphocyte degranulation and target cell lysis

Andrea Maul-Pavicic; Samuel C. C. Chiang; Anne Rensing-Ehl; Birthe Jessen; Cyril Fauriat; Stephanie M. Wood; Sebastian Sjöqvist; Markus Hufnagel; Ilka Schulze; Thilo Bass; Wolfgang W. A. Schamel; Sebastian Fuchs; Hanspeter Pircher; Christie-Ann McCarl; Katsuhiko Mikoshiba; Klaus Schwarz; Stefan Feske; Yenan T. Bryceson; Stephan Ehl

Lymphocytes mediate cytotoxicity by polarized release of the contents of cytotoxic granules toward their target cells. Here, we have studied the role of the calcium release-activated calcium channel ORAI1 in human lymphocyte cytotoxicity. Natural killer (NK) cells obtained from an ORAI1-deficient patient displayed defective store-operated Ca2+ entry (SOCE) and severely defective cytotoxic granule exocytosis leading to impaired target cell lysis. Similar findings were obtained using NK cells from a stromal interaction molecule 1-deficient patient. The defect occurred at a late stage of the signaling process, because activation of leukocyte functional antigen (LFA)-1 and cytotoxic granule polarization were not impaired. Moreover, pharmacological inhibition of SOCE interfered with degranulation and target cell lysis by freshly isolated NK cells and CD8+ effector T cells from healthy donors. In addition to effects on lymphocyte cytotoxicity, synthesis of the chemokine macrophage inflammatory protein-1β and the cytokines TNF-α and IFN-γ on target cell recognition was impaired in ORAI1-deficient NK cells, as previously described for T cells. By contrast, NK cell cytokine production induced by combinations of IL-12, IL-15, and IL-18 was not impaired by ORAI1 deficiency. Taken together, these results identify a critical role for ORAI1-mediated Ca2+ influx in granule exocytosis for lymphocyte cytotoxicity as well as for cytokine production induced by target cell recognition.


Journal of Medical Genetics | 2013

A novel intellectual disability syndrome caused by GPI anchor deficiency due to homozygous mutations in PIGT

Malin Kvarnung; Daniel Nilsson; Anna Lindstrand; G. Christoph Korenke; Samuel C. C. Chiang; Elisabeth Blennow; Markus Bergmann; Tommy Stödberg; Outi Mäkitie; Britt-Marie Anderlid; Yenan T. Bryceson; Magnus Nordenskjöld; Ann Nordgren

Purpose To delineate the molecular basis for a novel autosomal recessive syndrome, characterised by distinct facial features, intellectual disability, hypotonia and seizures, in combination with abnormal skeletal, endocrine, and ophthalmologic findings. Methods We examined four patients from a consanguineous kindred with a strikingly similar phenotype, by using whole exome sequencing (WES). Functional validation of the initial results were performed by flow cytometry determining surface expression of glycosylphosphatidylinositol (GPI) and GPI anchored proteins and, in addition, by in vivo assays on zebrafish embryos. Results The results from WES identified a homozygous mutation, c.547A>C (p.Thr183Pro), in PIGT; Sanger sequencing of additional family members confirmed segregation with the disease. PIGT encodes phosphatidylinositol-glycan biosynthesis class T (PIG-T) protein, which is a subunit of the transamidase complex that catalyses the attachment of proteins to GPI. By flow cytometry, we found that granulocytes from the patients had reduced levels of the GPI anchored protein CD16b, supporting pathogenicity of the mutation. Further functional in vivo validation via morpholino mediated knockdown of the PIGT ortholog in zebrafish (pigt) showed that, unlike human wild-type PIGT mRNA, the p.Thr183Pro encoding mRNA failed to rescue gastrulation defects induced by the suppression of pigt. Conclusions We identified mutations in PIGT as the cause of a novel autosomal recessive intellectual disability syndrome. Our results demonstrate a new pathogenic mechanism in the GPI anchor pathway and expand the clinical spectrum of disorders belonging to the group of GPI anchor deficiencies.


Blood | 2013

Comparison of primary human cytotoxic T-cell and natural killer cell responses reveal similar molecular requirements for lytic granule exocytosis but differences in cytokine production.

Samuel C. C. Chiang; Jakob Theorell; Miriam Entesarian; Marie Meeths; Monika Mastafa; Waleed Al-Herz; Per Frisk; Kimberly Gilmour; Marianne Ifversen; Cecilia Langenskiöld; Maciej Machaczka; Ahmed Naqvi; Jeanette Payne; Antonio Pérez-Martínez; Magnus Sabel; Ekrem Unal; Sule Unal; Jacek Winiarski; Magnus Nordenskjöld; Hans-Gustaf Ljunggren; Jan-Inge Henter; Yenan T. Bryceson

Cytotoxic lymphocytes, encompassing cytotoxic T lymphocytes (CTLs) and natural killer (NK) cells, kill pathogen-infected, neoplastic, or certain hematopoietic cells through the release of perforin-containing lytic granules. In the present study, we first performed probability-state modeling of differentiation and lytic granule markers on CD8(+) T cells to enable the comparison of bona fide CTLs with NK cells. Analysis identified CD57(bright) expression as a reliable phenotype of granule marker-containing CTLs. We then compared CD3(+)CD8(+)CD57(bright) CTLs with NK cells. Healthy adult peripheral blood CD3(+)CD8(+)CD57(bright) CTLs expressed more granzyme B but less perforin than CD3(-)CD56(dim) NK cells. On stimulation, such CTLs degranulated more readily than other T-cell subsets, but had a propensity to degranulate that was similar to NK cells. Remarkably, the CTLs produced cytokines more rapidly and with greater frequency than NK cells. In patients with biallelic mutations in UNC13D, STX11, or STXBP2 associated with familial hemophagocytic lymphohistiocytosis, CTL and NK cell degranulation were similarly impaired. Therefore, cytotoxic lymphocyte subsets have similar requirements for Munc13-4, syntaxin-11, and Munc18-2 in lytic granule exocytosis. The present results provide a detailed comparison of human CD3(+)CD8(+)CD57(bright) CTLs and NK cells and suggest that analysis of CD57(bright) CTL function may prove useful in the diagnosis of primary immunodeficiencies including familial hemophagocytic lymphohistiocytosis.


Blood | 2017

Gain-of-function SAMD9L mutations cause a syndrome of cytopenia, immunodeficiency, MDS and neurological symptoms

Bianca Tesi; Josef Davidsson; Matthias Voss; Elisa Rahikkala; Tim D. Holmes; Samuel C. C. Chiang; Jonna Komulainen-Ebrahim; Sorina Gorcenco; Alexandra Rundberg Nilsson; Tim Ripperger; Hannaleena Kokkonen; David Bryder; Thoas Fioretos; Jan-Inge Henter; Merja Möttönen; Riitta Niinimäki; Lars J Nilsson; Kees-Jan Pronk; Andreas Puschmann; Hong Qian; Johanna Uusimaa; Jukka S. Moilanen; Ulf Tedgård; Jörg Cammenga; Yenan T. Bryceson

Several monogenic causes of familial myelodysplastic syndrome (MDS) have recently been identified. We studied 2 families with cytopenia, predisposition to MDS with chromosome 7 aberrations, immunodeficiency, and progressive cerebellar dysfunction. Genetic studies uncovered heterozygous missense mutations in SAMD9L, a tumor suppressor gene located on chromosome arm 7q. Consistent with a gain-of-function effect, ectopic expression of the 2 identified SAMD9L mutants decreased cell proliferation relative to wild-type protein. Of the 10 individuals identified who were heterozygous for either SAMD9L mutation, 3 developed MDS upon loss of the mutated SAMD9L allele following intracellular infections associated with myeloid, B-, and natural killer (NK)-cell deficiency. Five other individuals, 3 with spontaneously resolved cytopenic episodes in infancy, harbored hematopoietic revertant mosaicism by uniparental disomy of 7q, with loss of the mutated allele or additional in cisSAMD9L truncating mutations. Examination of 1 individual indicated that somatic reversions were postnatally selected. Somatic mutations were tracked to CD34+ hematopoietic progenitor cell populations, being further enriched in B and NK cells. Stimulation of these cell types with interferon (IFN)-α or IFN-γ induced SAMD9L expression. Clinically, revertant mosaicism was associated with milder disease, yet neurological manifestations persisted in 3 individuals. Two carriers also harbored a rare, in trans germ line SAMD9L missense loss-of-function variant, potentially counteracting the SAMD9L mutation. Our results demonstrate that gain-of-function mutations in the tumor suppressor SAMD9L cause cytopenia, immunodeficiency, variable neurological presentation, and predisposition to MDS with -7/del(7q), whereas hematopoietic revertant mosaicism commonly ameliorated clinical manifestations. The findings suggest a role for SAMD9L in regulating IFN-driven, demand-adapted hematopoiesis.


Experimental Cell Research | 2014

Pathophysiology and spectrum of diseases caused by defects in lymphocyte cytotoxicity

Marie Meeths; Samuel C. C. Chiang; Alexandra Löfstedt; Martha-Lena Müller; Bianca Tesi; Jan-Inge Henter; Yenan T. Bryceson

In experimental settings, lymphocyte cytotoxicity has been recognized as a central mechanism for immune defense against infected and neoplastic cells. More recently, molecular determinants of lymphocyte cytotoxicity have been identified through studies of rare, inherited hyperinflammatory and lymphoproliferative syndromes that include hemophagocytic lymphohistiocytosis (HLH). These studies have unraveled a set of genes pivotal for the biogenesis and directed release of perforin-containing lysosomes that mediate target cell killing, in addition to other pathways including Fas that also contribute to induction of cell death. Furthermore, studies of such human primary immunodeficiencies have highlighted non-redundant roles of perforin for maintenance of immune homeostasis. Besides providing mechanistic insights to lymphocyte cytotoxicity, studies of individuals with rare hyperinflammatory diseases are highlighting the relevance of lymphocyte cytotoxicity to more common human diseases. It is increasingly recognized that mutations abrogating lymphocyte cytotoxicity not only cause HLH, but also are associated with susceptibility to cancer and autoimmune syndromes. In addition, patients may initially be present with neurological symptoms or severe infectious disease masquerading as variable immunodeficiency syndrome. Here, we highlight new knowledge regarding the molecular mechanisms regulating lymphocyte cytotoxicity and review how mutations in genes associated with HLH cause disease. We also discuss the wider implications of impairments in lymphocyte cytotoxicity for human disease predisposition.


Journal of Experimental Medicine | 2014

Transcriptional regulation of Munc13-4 expression in cytotoxic lymphocytes is disrupted by an intronic mutation associated with a primary immunodeficiency

Frank Cichocki; Heinrich Schlums; Hongchuan Li; Vanessa Stache; Timothy Holmes; Todd Lenvik; Samuel C. C. Chiang; Jeffrey S. Miller; Marie Meeths; Stephen K. Anderson; Yenan T. Bryceson

A conserved regulatory element in intron 1 of UNC13D regulates Munc13-4 expression.


Haematologica | 2013

Development of classical Hodgkin’s lymphoma in an adult with biallelic STXBP2 mutations

Maciej Machaczka; Monika Klimkowska; Samuel C. C. Chiang; Marie Meeths; Martha-Lena Müller; Britt Gustafsson; Jan-Inge Henter; Yenan T. Bryceson

Experimental model systems have delineated an important role for cytotoxic lymphocytes in the immunosurveillance of cancer. In humans, perforin-deficiency has been associated with occurrence of hematologic malignancies. Here, we describe an Epstein-Barr virus-positive classical Hodgkin’s lymphoma in a patient harboring biallelic mutations in STXBP2, a gene required for exocytosis of perforin-containing lytic granules and associated with familial hemophagocytic lymphohistocytosis. Cytotoxic T lymphocytes were found infiltrating the tumor, and a high frequency of Epstein-Barr virus-specific cytotoxic T lymphocytes were detected in peripheral blood. However, lytic granule exocytosis and cytotoxicity by cytotoxic T lymphocytes, as well as natural killer cells, were severely impaired in the patient. Thus, the data suggest a link between defective lymphocyte exocytosis and development of lymphoma in STXBP2-deficient patients. Therefore, with regards to treatment of familial hemophagocytic lymphohistocytosis patients with mutations in genes required for lymphocyte exocytosis, it is important to consider both the risks of hemophagocytic lymphohistocytosis and malignancy.

Collaboration


Dive into the Samuel C. C. Chiang's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jan-Inge Henter

Karolinska University Hospital

View shared research outputs
Top Co-Authors

Avatar

Marie Meeths

Karolinska University Hospital

View shared research outputs
Top Co-Authors

Avatar

Bianca Tesi

Karolinska University Hospital

View shared research outputs
Top Co-Authors

Avatar

Magnus Nordenskjöld

Karolinska University Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Heinrich Schlums

Karolinska University Hospital

View shared research outputs
Top Co-Authors

Avatar

Stephanie M. Wood

Karolinska University Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hans-Gustaf Ljunggren

Karolinska University Hospital

View shared research outputs
Researchain Logo
Decentralizing Knowledge