Samuel Cantarero
University of Granada
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Samuel Cantarero.
Journal of Environmental Management | 2012
Samuel Cantarero; Carlos Prieto; Ignacio López
Agricultural application has become the most widespread method of sewage sludge disposal, being the most economical outlet for sludge and also recycling beneficial plant nutrients and organic matter to soil for crop production. As a matter of fact, the European Sewage Sludge Directive 86/278/EEC seeks to encourage the disposal of sewage sludge in agriculture applications and regulate its use to prevent harmful effects on the soil environment. At the present time, the sewage sludge Directive is under revision and a possible cut-off limit for some organic chemicals may be implemented. Linear alkylbenzene sulphonate (LAS), the main synthetic anionic surfactant, has been included in the draft list of chemicals to be limited. The present research work deals with the monitoring of LAS and soap in Spanish sewage sludge. The average concentration of LAS found in anaerobic sewage sludge samples was 8.06 g/kg, higher than the average values for European sludge. Besides, it has been also found that more than 55% of Spanish anaerobic sludge would not fulfil the limit proposed by the 3rd European Working paper on sludge. As a consequence, the implementation of the limit for LAS would make the disposal of most Spanish biosolids for agricultural applications almost impossible. Regarding the mechanisms why anionic surfactants are found in sludge, two surfactants are compared: LAS and soap, both readily biodegraded in aerobic conditions. Irrespective of the anaerobic biodegradability of soap, its concentration found in sludge is higher than LAS (only anaerobically biodegradable under particular conditions). The relevance of anaerobic biodegradation to assure environmental protection is discussed for this case.
Environmental Toxicology and Chemistry | 2011
Samuel Cantarero; A. Zafra-Gómez; O. Ballesteros; A. Navalón; J.L. Vílchez; C. Verge; Juan de Ferrer
We propose a study of the matrix effect in the determination of linear alkylbenzene sulfonates (LAS) in sewage sludge samples. First, a rapid, selective and sensitive method is proposed. The method involves two stages: the extraction of the compound from the samples and analysis by liquid chromatography with fluorescence detection (LC-FLD). Three different techniques of extraction (microwave-assisted extraction, Soxhlet, and ultrasounds) were compared, and microwave-assisted extraction was selected as the best suited for our purpose. Microwave-assisted extraction allows reducing the extraction time (25 min compared with 12 h for conventional Soxhlet extraction) and solvent waste (25 ml of methanol compared with 200 ml for Soxhlet or more than 50 ml for the ultrasonic procedure). Absence of matrix effect was evaluated with two standards (2ØC(8:0) and 2ØC(16:0) ) that are not commercial; therefore, neither of them was detected in sewage sludge samples and they showed similar environmental behavior (adsorption and precipitation) to LAS (C(11:0) -C(13.0) ), which allow us to evaluate the matrix effect. Validation was carried out by a recovery assay, and the method was applied to samples from different sources; therefore, they had different compositions.
Marine Pollution Bulletin | 2012
Samuel Cantarero; F.J. Camino-Sánchez; A. Zafra-Gómez; O. Ballesteros; A. Navalón; J.L. Vílchez; C. Verge; Marco S. Reis; Pedro M. Saraiva
The contamination of aquatic environments has become the focus of increasing regulation and public concern due to their potential and unknown negative effects on the ecosystems. The present work develops a monitoring and statistical study, based on the analysis of variance test (ANOVA) and the multivariable analysis, both for insoluble soap and LAS in order to compare the behavior of different anionic surfactants in this environmental compartment. First, a novel and successfully validated methodology to analyze insoluble soap in these samples is developed. The matrix effect and the comparison of different extraction techniques were also performed. The optimized analytical methodologies were applied to 48 representative samples collected from the Almeria Coast (Spain) and then a statistical analysis to correlate anionic surfactant concentration and several variables associated with marine sediment samples was also developed. The results obtained showed relevant conclusions related to the environmental behavior of anionic surfactants in marine sediments.
Journal of Separation Science | 2013
Julio César Benítez-Villalba; A. Zafra-Gómez; N. Dorival-García; F.J. Camino-Sánchez; Samuel Cantarero; J.L. Vílchez
The efficiency of two extraction techniques--ultrasound-assisted extraction and pressurized liquid extraction--are compared and evaluated in the determination of parabens in compost samples. The extraction parameters for each technique were accurately optimized. The selected compounds were detected and quantified using ultra-performance LC MS/MS, operating in negative ESI and in SRM mode. The analytes were separated in less than 5 min. Ethylparaben (ring-(13)C6 labeled) was used as an internal standard. Two selective, sensitive, and accurate analytical methods were developed and validated. The LODs of the methods ranged from 3 to 7 ng/g and the LOQs from 10 to 23 ng/g, while inter- and intraday variability was under 6% in all cases. The methods were validated separately by using matrix-matched calibration and recovery assays with spiked samples. Recovery rates ranged from 94.0 to 105.0%. Compost samples were taken from different composting plants. Although the statistical comparison demonstrated no statistically significant differences between the two extraction techniques, the method based on pressurized liquid extraction was more sensitive than the ultrasound extraction based method.
Talanta | 2010
Samuel Cantarero; A. Zafra-Gómez; O. Ballesteros; A. Navalón; J.L. Vílchez; G. Crovetto; C. Verge; J.A. de Ferrer
A new selective and sensitive method for the determination of insoluble fatty acid salts (soap) in sewage sludge samples is proposed. The method involves a clean up of sample with petroleum ether, the conversion of calcium and magnesium insoluble salts into soluble potassium salts, potassium salts extraction with methanol, and a derivatization procedure previous to the liquid chromatography with fluorescence detection (LC-FLD) analysis. Three different extraction techniques (Soxhlet, microwave-assisted extraction and ultrasounds) were compared and microwave-assisted extraction (MAE) was selected as appropriate for our purpose. This allowed to reduce the extraction time and solvent waste (50 mL of methanol in contrast with 250 mL for Soxhlet procedure). The absence of matrix effect was demonstrated with two standards (C(13:0) and C(17:0)) that are not commercials and neither of them has been detected in sewage sludge samples. Therefore, it was possible to evaluate the matrix effect since both standards have similar environmental behaviour (adsorption and precipitation) to commercial soaps (C(10:0)-C(18:0)). The method was successfully applied to samples from different sources and consequently, with different composition.
Environmental Toxicology and Chemistry | 2010
Samuel Cantarero; A. Zafra-Gómez; O. Ballesteros; A. Navalón; J.L. Vílchez; G. Crovetto; C. Verge; Juan de Ferrer
We have developed a new analytical procedure for determining insoluble Ca and Mg fatty acid salts (soaps) in agricultural soil and sewage sludge samples. The number of analytical methodologies that focus in the determination of insoluble soap salts in different environmental compartments is very limited. In this work, we propose a methodology that involves a sample clean-up step with petroleum ether to remove soluble salts and a conversion of Ca and Mg insoluble salts into soluble potassium salts using tripotassium ethylenediaminetetraacetate salt and potassium carbonate, followed by the extraction of analytes from the samples using microwave-assisted extraction with methanol. An improved esterification procedure using 2,4-dibromoacetophenone before the liquid chromatography with ultraviolet detection analysis also has been developed. The absence of matrix effect was demonstrated with two fatty acid Ca salts that are not commercial and are never detected in natural samples (C₁₃:₀ and C₁₇:₀). Therefore, it was possible to evaluate the matrix effect because both standards have similar environmental behavior (adsorption and precipitation) to commercial soaps (C₁₀:₀) to C₁₈:₀). We also studied the effect of the different variables on the clean-up, the conversion of Ca soap, and the extraction and derivatization procedures. The quantification limits found ranged from 0.4 to 0.8 mg/kg. The proposed method was satisfactorily applied for the development of a study on soap behavior in agricultural soil and sewage sludge samples.
Nutrients | 2017
Garyfallia Kapravelou; Rosario Martínez; Elena Nebot; María López-Jurado; Pilar Aranda; Francisco Arrebola; Samuel Cantarero; Milagros Galisteo; Jesús M. Porres
Metabolic syndrome (MetS) is a group of related metabolic alterations that increase the risk of developing non-alcoholic fatty liver disease (NAFLD). Several lifestyle interventions based on dietary treatment with functional ingredients and physical activity are being studied as alternative or reinforcement treatments to the pharmacological ones actually in use. In the present experiment, the combined treatment with mung bean (Vigna radiata), a widely used legume with promising nutritional and health benefits that was included in the experimental diet as raw or 4 day-germinated seed flour, and aerobic interval training protocol (65–85% VO2 max) has been tested in lean and obese Zucker rats following a 2 × 2 × 2 (2 phenotypes, 2 dietary interventions, 2 lifestyles) factorial ANOVA (Analysis of Variance) statistical analysis. Germination of V. radiata over a period of four days originated a significant protein hydrolysis leading to the appearance of low molecular weight peptides. The combination of 4 day-germinated V. radiata and aerobic interval training was more efficient compared to raw V. radiata at improving the aerobic capacity and physical performance, hepatic histology and functionality, and plasma lipid parameters as well as reverting the insulin resistance characteristic of the obese Zucker rat model. In conclusion, the joint intervention with legume sprouts and aerobic interval training protocol is an efficient treatment to improve the alterations of glucose and lipid metabolism as well as hepatic histology and functionality related to the development of NAFLD and the MetS.
Chemosphere | 2013
Carolina Fernández-Ramos; O. Ballesteros; A. Zafra-Gómez; Rosario Blanc; A. Navalón; G. Crovetto; Samuel Cantarero; B. Oliver-Rodríguez; J.L. Vílchez
The number of analytical methodologies that focus in the determination of alcohol sulfates (AS) and alcohol ethoxysulfates (AES) in terrestrial environment is very limited. In the present work, a new methodology to improve the extraction and determination of AS and AES in agricultural soil samples has been developed. Prior to instrumental analysis, an extraction procedure using pressurized liquid extraction with methanol (PLE) was carried out in order to obtain the highest recoveries and improve sensitivity. The most influential variables affecting the PLE procedure were optimized. Then, the separation and quantification of analytes were performed by liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS). The limits of detection (LOD) ranged from 0.03 to 0.08μgg(-1) for AS homologues and in the case of AES ethoxymers from 0.03 to 0.09μgg(-1) for AES-C12Ex and from 0.03 to 0.08μgg(-1) for AES-C14Ex. Matrix-matched calibration was used. Trueness was evaluated by using a spike recovery assay with spiked blank samples, and the recoveries ranged from 98.3% to 101.0% for AS and from 99.9% to 100.1% for AES. The method was satisfactorily applied in a field study designed to evaluate the environmental behavior of these compounds in agricultural soil.
Journal of Environmental Science and Health Part A-toxic\/hazardous Substances & Environmental Engineering | 2011
Samuel Cantarero; A. Zafra-Gómez; O. Ballesteros; A. Navalón; Marco S. Reis; Pedro M. Saraiva; J.L. Vílchez
In this work we present a monitoring study of linear alkylbenzene sulfonates (LAS) and insoluble soap performed on Spanish sewage sludge samples. This work focuses on finding statistical relations between LAS concentrations and insoluble soap in sewage sludge samples and variables related to wastewater treatment plants such as water hardness, population and treatment type. It is worth to mention that 38 samples, collected from different Spanish regions, were studied. The statistical tool we used was Principal Component Analysis (PC), in order to reduce the number of response variables. The analysis of variance (ANOVA) test and a non-parametric test such as the Kruskal-Wallis test were also studied through the estimation of the p-value (probability of obtaining a test statistic at least as extreme as the one that was actually observed, assuming that the null hypothesis is true) in order to study possible relations between the concentration of both analytes and the rest of variables. We also compared LAS and insoluble soap behaviors. In addition, the results obtained for LAS (mean value) were compared with the limit value proposed by the future Directive entitled “Working Document on Sludge”. According to the results, the mean obtained for soap and LAS was 26.49 g kg−1 and 6.15 g kg−1 respectively. It is worth noting that LAS mean was significantly higher than the limit value (2.6 g kg−1). In addition, LAS and soap concentrations depend largely on water hardness. However, only LAS concentration depends on treatment type.
International Conference on Education and New Learning Technologies | 2017
Eloisa Manzano; Samuel Cantarero; Alejandra Garcia; Francisco Contreras; Francisco Martin; J.L. Vílchez
The objective of the ARCHEM Project is twofold. First, to promote and reinforce the cooperation between the chemical and the archaeological sciences, the most important disciplines for effectively deriving the maximum amount of information from the analysis of materials recovered from excavation sites worldwide. Archaeological chemistry focuses not only on the study of ancient pottery, stone, metal, and glass, but also on new materials of interest such as archaeological soils, fibres, dyes, bone, DNA and, more recently, organic residues from ceramic sherds. In the last few years, scientists have focused on the use of analytical chemistry to identify the constituents of archaeological artefacts to find out what these objects were made from and even their provenance. The development of new analytical methods has enabled us to discern patterns of human behaviour in the past. The ARCHEM Project focuses on the characterization of the organic residues found in archaeological pottery. Therefore, this represents an innovative project that brings together two traditionally independent disciplines with the aim of obtaining high quality information about past societies. The second objective of the ARCHEM project is the development of competencies and abilities in the field of archaeological chemistry through the production of Doctoral and Master’s Theses. In this way, Masters degree students (members of the ARCHEM project) will learn a new perspective approach to the study of archaeological pottery including the aspects related to the chemical analysis. Basic knowledge of chemical analysis will provide students from humanities background with the abilities for a more complete professional development in Archaeometry. In this context, the idea of adapting the teaching of analytical chemistry to students of archaeology has led the team of researchers, members of the ARCHEM project, to consider including the subject of chemistry in the Archaeology degree curriculum. This early learning of chemistry will enable undergraduate students to unravel the secrets of archaeology through chemistry.