Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Samuel Cartinhour is active.

Publication


Featured researches published by Samuel Cartinhour.


Proceedings of the National Academy of Sciences of the United States of America | 2003

The complete genome sequence of the Arabidopsis and tomato pathogen Pseudomonas syringae pv. tomato DC3000

C. Robin Buell; Vinita Joardar; Magdalen Lindeberg; Jeremy D. Selengut; Ian T. Paulsen; Michelle L. Gwinn; Robert J. Dodson; Robert T. DeBoy; A. Scott Durkin; James F. Kolonay; Ramana Madupu; Sean C. Daugherty; Lauren M. Brinkac; Maureen J. Beanan; Daniel H. Haft; William C. Nelson; Tanja Davidsen; Nikhat Zafar; Liwei Zhou; Jia Liu; Qiaoping Yuan; Hoda Khouri; Nadia Fedorova; Bao Tran; Daniel Russell; Kristi Berry; Teresa Utterback; Susan Van Aken; Tamara Feldblyum; Mark D'Ascenzo

We report the complete genome sequence of the model bacterial pathogen Pseudomonas syringae pathovar tomato DC3000 (DC3000), which is pathogenic on tomato and Arabidopsis thaliana. The DC3000 genome (6.5 megabases) contains a circular chromosome and two plasmids, which collectively encode 5,763 ORFs. We identified 298 established and putative virulence genes, including several clusters of genes encoding 31 confirmed and 19 predicted type III secretion system effector proteins. Many of the virulence genes were members of paralogous families and also were proximal to mobile elements, which collectively comprise 7% of the DC3000 genome. The bacterium possesses a large repertoire of transporters for the acquisition of nutrients, particularly sugars, as well as genes implicated in attachment to plant surfaces. Over 12% of the genes are dedicated to regulation, which may reflect the need for rapid adaptation to the diverse environments encountered during epiphytic growth and pathogenesis. Comparative analyses confirmed a high degree of similarity with two sequenced pseudomonads, Pseudomonas putida and Pseudomonas aeruginosa, yet revealed 1,159 genes unique to DC3000, of which 811 lack a known function.


Nature Biotechnology | 2005

Complete genome sequence of the plant commensal Pseudomonas fluorescens Pf-5

Ian T. Paulsen; Caroline M. Press; Jacques Ravel; Donald Y. Kobayashi; Garry Myers; Dmitri V. Mavrodi; Robert T. DeBoy; Rekha Seshadri; Qinghu Ren; Ramana Madupu; Robert J. Dodson; A. Scott Durkin; Lauren M Brinkac; Sean C. Daugherty; Stephen A Sullivan; M. J. Rosovitz; Michelle L. Gwinn; Liwei Zhou; Davd J Schneider; Samuel Cartinhour; William C. Nelson; Janice Weidman; Kisha Watkins; Kevin Tran; Hoda Khouri; Elizabeth A. Pierson; Leland S. Pierson; Linda S. Thomashow; Joyce E. Loper

Pseudomonas fluorescens Pf-5 is a plant commensal bacterium that inhabits the rhizosphere and produces secondary metabolites that suppress soilborne plant pathogens. The complete sequence of the 7.1-Mb Pf-5 genome was determined. We analyzed repeat sequences to identify genomic islands that, together with other approaches, suggested P. fluorescens Pf-5s recent lateral acquisitions include six secondary metabolite gene clusters, seven phage regions and a mobile genomic island. We identified various features that contribute to its commensal lifestyle on plants, including broad catabolic and transport capabilities for utilizing plant-derived compounds, the apparent ability to use a diversity of iron siderophores, detoxification systems to protect from oxidative stress, and the lack of a type III secretion system and toxins found in related pathogens. In addition to six known secondary metabolites produced by P. fluorescens Pf-5, three novel secondary metabolite biosynthesis gene clusters were also identified that may contribute to the biocontrol properties of P. fluorescens Pf-5.


Proceedings of the National Academy of Sciences of the United States of America | 2002

Genomewide identification of Pseudomonas syringae pv. tomato DC3000 promoters controlled by the HrpL alternative sigma factor.

Derrick E. Fouts; Robert B. Abramovitch; James R. Alfano; Angela M. Baldo; C. Robin Buell; Samuel Cartinhour; Arun K. Chatterjee; Mark D'Ascenzo; Michelle L. Gwinn; Sondra G. Lazarowitz; Nai-Chun Lin; Gregory B. Martin; Amos H. Rehm; David J. Schneider; Karin V. van Dijk; Xiaoyan Tang; Alan Collmer

The ability of Pseudomonas syringae pv. tomato DC3000 to parasitize tomato and Arabidopsis thaliana depends on genes activated by the HrpL alternative sigma factor. To support various functional genomic analyses of DC3000, and specifically, to identify genes involved in pathogenesis, we developed a draft sequence of DC3000 and used an iterative process involving computational and gene expression techniques to identify virulence-implicated genes downstream of HrpL-responsive promoters. Hypersensitive response and pathogenicity (Hrp) promoters are known to control genes encoding the Hrp (type III protein secretion) machinery and a few type III effector proteins in DC3000. This process involved (i) identification of 9 new virulence-implicated genes in the Hrp regulon by miniTn5gus mutagenesis, (ii) development of a hidden Markov model (HMM) trained with known and transposon-identified Hrp promoter sequences, (iii) HMM identification of promoters upstream of 12 additional virulence-implicated genes, and (iv) microarray and RNA blot analyses of the HrpL-dependent expression of a representative subset of these DC3000 genes. We found that the Hrp regulon encodes candidates for 4 additional type III secretion machinery accessory factors, homologs of the effector proteins HopPsyA, AvrPpiB1 (2 copies), AvrPpiC2, AvrPphD (2 copies), AvrPphE, AvrPphF, and AvrXv3, and genes associated with the production or metabolism of virulence factors unrelated to the Hrp type III secretion system, including syringomycin synthetase (SyrE), Nɛ-(indole-3-acetyl)-l-lysine synthetase (IaaL), and a subsidiary regulon controlling coronatine production. Additional candidate effector genes, hopPtoA2, hopPtoB2, and an avrRps4 homolog, were preceded by Hrp promoter-like sequences, but these had HMM expectation values of relatively low significance and were not detectably activated by HrpL.


Molecular Plant-microbe Interactions | 2006

Closing the circle on the discovery of genes encoding Hrp regulon members and type III secretion system effectors in the genomes of three model Pseudomonas syringae strains

Magdalen Lindeberg; Samuel Cartinhour; Christopher R. Myers; Lisa M. Schechter; David J. Schneider; Alan Collmer

Pseudomonas syringae strains translocate large and distinct collections of effector proteins into plant cells via the type III secretion system (T3SS). Mutations in T3SS-encoding hrp genes are unable to elicit the hypersensitive response or pathogenesis in nonhost and host plants, respectively. Mutations in individual effectors lack strong phenotypes, which has impeded their discovery. P. syringae effectors are designated Hop (Hrp outer protein) or Avr (avirulence) proteins. Some Hop proteins are considered to be extracellular T3SS helpers acting at the plant-bacterium interface. Identification of complete sets of effectors and related proteins has been enabled by the application of bioinformatic and high-throughput experimental techniques to the complete genome sequences of three model strains: P. syringae pv. tomato DC3000, P. syringae pv. phaseolicola 1448A, and P. syringae pv. syringae B728a. Several recent papers, including three in this issue of Molecular Plant-Microbe Interactions, address the effector inventories of these strains. These studies establish that active effector genes in P. syringae are expressed by the HrpL alternative sigma factor and can be predicted on the basis of cis Hrp promoter sequences and N-terminal amino-acid patterns. Among the three strains analyzed, P. syringae pv. tomato DC3000 has the largest effector inventory and P. syringae pv. syringae B728a has the smallest. Each strain has several effector genes that appear inactive. Only five of the 46 effector families that are represented in these three strains have an active member in all of the strains. Web-based community resources for managing and sharing growing information on these complex effector arsenals should help future efforts to understand how effectors promote P. syringae virulence.


Journal of Bacteriology | 2010

Transcriptome Analysis of Pseudomonas syringae Identifies New Genes, Noncoding RNAs, and Antisense Activity

Melanie J. Filiatrault; Paul Stodghill; Philip A. Bronstein; Simon Moll; Magdalen Lindeberg; George Grills; Peter A. Schweitzer; Wei Wang; Gary P. Schroth; Shujun Luo; Irina Khrebtukova; Yong Yang; Theodore Thannhauser; Bronwyn G. Butcher; Samuel Cartinhour; David J. Schneider

To fully understand how bacteria respond to their environment, it is essential to assess genome-wide transcriptional activity. New high-throughput sequencing technologies make it possible to query the transcriptome of an organism in an efficient unbiased manner. We applied a strand-specific method to sequence bacterial transcripts using Illuminas high-throughput sequencing technology. The resulting sequences were used to construct genome-wide transcriptional profiles. Novel bioinformatics analyses were developed and used in combination with proteomics data for the qualitative classification of transcriptional activity in defined regions. As expected, most transcriptional activity was consistent with predictions from the genome annotation. Importantly, we identified and confirmed transcriptional activity in areas of the genome inconsistent with the annotation and in unannotated regions. Further analyses revealed potential RpoN-dependent promoter sequences upstream of several noncoding RNAs (ncRNAs), suggesting a role for these ncRNAs in RpoN-dependent phenotypes. We were also able to validate a number of transcriptional start sites, many of which were consistent with predicted promoter motifs. Overall, our approach provides an efficient way to survey global transcriptional activity in bacteria and enables rapid discovery of specific areas in the genome that merit further investigation.


Molecular Plant-microbe Interactions | 2006

Whole-Genome Expression Profiling Defines the HrpL Regulon of Pseudomonas syringae pv. tomato DC3000, Allows de novo Reconstruction of the Hrp cis Clement, and Identifies Novel Coregulated Genes

Adriana Ferreira; Christopher R. Myers; Jeffrey S. Gordon; Gregory B. Martin; Monica Vencato; Alan Collmer; Misty D. Wehling; James R. Alfano; Gabriel Moreno-Hagelsieb; Warren F. Lamboy; Genevieve DeClerck; David J. Schneider; Samuel Cartinhour

Pseudomonas syringae pv. tomato DC3000 is a model pathogen of tomato and Arabidopsis that uses a hypersensitive response and pathogenicity (Hrp) type III secretion system (T3SS) to deliver virulence effector proteins into host cells. Expression of the Hrp system and many effector genes is activated by the HrpL alternative sigma factor. Here, an open reading frame-specific whole-genome microarray was constructed for DC3000 and used to comprehensively identify genes that are differentially expressed in wild-type and deltahrpL strains. Among the genes whose differential regulation was statistically significant, 119 were upregulated and 76 were downregulated in the wild-type compared with the deltahrpL strain. Hierarchical clustering revealed a subset of eight genes that were upregulated particularly rapidly. Gibbs sampling of regions upstream of HrpL-activated operons revealed the Hrp promoter as the only identifiable regulatory motif and supported an iterative refinement involving real-time polymerase chain reaction testing of additional HrpL-activated genes and refinements in a hidden Markov model that can be used to predict Hrp promoters in P. syringae strains. This iterative bioinformatic-experimental approach to a comprehensive analysis of the HrpL regulon revealed a mix of genes controlled by HrpL, including those encoding most type III effectors, twin-arginine transport (TAT) substrates, other regulatory proteins, and proteins involved in the synthesis or metabolism of phytohormones, phytotoxins, and myo-inositol. This analysis provides an extensively verified, robust method for predicting Hrp promoters in P. syringae genomes, and it supports subsequent identification of effectors and other factors that likely are important to the host-specific virulence of P. syringae.


Comparative and Functional Genomics | 2002

Gramene: development and integration of trait and gene ontologies for rice

Pankaj Jaiswal; Doreen Ware; Junjian Ni; Kuan Chang; Wei Zhao; Steven Schmidt; Xiaokang Pan; Kenneth Clark; Leonid Teytelman; Samuel Cartinhour; Lincoln Stein; Susan R. McCouch

Gramene (http://www.gramene.org/) is a comparative genome database for cereal crops and a community resource for rice. We are populating and curating Gramene with annotated rice (Oryza sativa) genomic sequence data and associated biological information including molecular markers, mutants, phenotypes, polymorphisms and Quantitative Trait Loci (QTL). In order to support queries across various data sets as well as across external databases, Gramene will employ three related controlled vocabularies. The specific goal of Gramene is, first to provide a Trait Ontology (TO) that can be used across the cereal crops to facilitate phenotypic comparisons both within and between the genera. Second, a vocabulary for plant anatomy terms, the Plant Ontology (PO) will facilitate the curation of morphological and anatomical feature information with respect to expression, localization of genes and gene products and the affected plant parts in a phenotype. The TO and PO are both in the early stages of development in collaboration with the International Rice Research Institute, TAIR and MaizeDB as part of the Plant Ontology Consortium. Finally, as part of another consortium comprising macromolecular databases from other model organisms, the Gene Ontology Consortium, we are annotating the confirmed and predicted protein entries from rice using both electronic and manual curation.


Molecular Plant-microbe Interactions | 2006

Bioinformatics-Enabled Identification of the HrpL Regulon and Type III Secretion System Effector Proteins of Pseudomonas syringae pv. phaseolicola 1448A

Monica Vencato; Fang Tian; James R. Alfano; C. Robin Buell; Samuel Cartinhour; Genevieve DeClerck; David S. Guttman; John Stavrinides; Vinita Joardar; Magdalen Lindeberg; Philip A. Bronstein; John W. Mansfield; Christopher R. Myers; Alan Collmer; David J. Schneider

The ability of Pseudomonas syringae pv. phaseolicola to cause halo blight of bean is dependent on its ability to translocate effector proteins into host cells via the hypersensitive response and pathogenicity (Hrp) type III secretion system (T3SS). To identify genes encoding type III effectors and other potential virulence factors that are regulated by the HrpL alternative sigma factor, we used a hidden Markov model, weight matrix model, and type III targeting-associated patterns to search the genome of P. syringae pv. phaseolicola 1448A, which recently was sequenced to completion. We identified 44 high-probability putative Hrp promoters upstream of genes encoding the core T3SS machinery, 27 candidate effectors and related T3SS substrates, and 10 factors unrelated to the Hrp system. The expression of 13 of these candidate HrpL regulon genes was analyzed by real-time polymerase chain reaction, and all were found to be upregulated by HrpL. Six of the candidate type III effectors were assayed for T3SS-dependent translocation into plant cells using the Bordetella pertussis calmodulin-dependent adenylate cyclase (Cya) translocation reporter, and all were translocated. PSPPH1855 (ApbE-family protein) and PSPPH3759 (alcohol dehydrogenase) have no apparent T3SS-related function; however, they do have homologs in the model strain P. syringae pv. tomato DC3000 (PSPTO2105 and PSPTO0834, respectively) that are similarly upregulated by HrpL. Mutations were constructed in the DC3000 homologs and found to reduce bacterial growth in host Arabidopsis leaves. These results establish the utility of the bioinformatic or candidate gene approach to identifying effectors and other genes relevant to pathogenesis in P. syringae genomes.


Molecular Microbiology | 2010

Oligonucleotide Recombination in Gram-Negative Bacteria

Bryan Swingle; Eric Markel; Nina Costantino; Mikhail Bubunenko; Samuel Cartinhour; Donald L. Court

This report describes several key aspects of a novel form of RecA‐independent homologous recombination. We found that synthetic single‐stranded DNA oligonucleotides (oligos) introduced into bacteria by transformation can site‐specifically recombine with bacterial chromosomes in the absence of any additional phage‐encoded functions. Oligo recombination was tested in four genera of Gram‐negative bacteria and in all cases evidence for recombination was apparent. The experiments presented here were designed with an eye towards learning to use oligo recombination in order to bootstrap identification and development of phage‐encoded recombination systems for recombineering in a wide range of bacteria. The results show that oligo concentration and sequence have the greatest influence on recombination frequency, while oligo length was less important. Apart from the utility of oligo recombination, these findings also provide insights regarding the details of recombination mediated by phage‐encoded functions. Establishing that oligos can recombine with bacterial genomes provides a link to similar observations of oligo recombination in archaea and eukaryotes suggesting the possibility that this process is evolutionary conserved.


Molecular Microbiology | 2008

Characterization of the PvdS-regulated promoter motif in Pseudomonas syringae pv. tomato DC3000 reveals regulon members and insights regarding PvdS function in other pseudomonads

Bryan Swingle; Deepti Thete; Monica Moll; Christopher R. Myers; David J. Schneider; Samuel Cartinhour

Bacteria that survive under variable conditions possess an assortment of genetic regulators to meet these challenges. The group IV or extracytoplasmic function (ECF) sigma factors regulate gene expression in response to specific environmental signals by altering the promoter specificity of RNA polymerase. We have undertaken a study of PvdS, a group IV sigma factor encoded by Pseudomonas syringae pv. tomato DC3000 (DC3000), a plant pathogen that is likely to encounter variations in nutrient availability as well as plant host defences. The gene encoding PvdS was previously identified by sequence similarity to the Pseudomonas aeruginosa orthologue, which directs transcription of genes encoding the biosynthesis of pyoverdine, a siderophore involved in iron acquisition, and is responsible for the characteristic fluorescence of the pseudomonads. We identified 15 promoters regulated by PvdS in DC3000 and characterized the promoter motif using computational analysis. Mutagenesis of conserved nucleotides within the motif interfered with promoter function and the degree of the effect was different depending on which region of the motif was mutated. Hidden Markov models constructed from alignments of sequence motifs extracted from DC3000 and PAO1 were used to query genomes of DC3000 and other fluorescent pseudomonads for similar motifs. We conclude that the role of PvdS as a regulator of pyoverdine synthesis is conserved among the fluorescent pseudomonads, but the promoters recognized by PvdS orthologues may differ subtly from species to species.

Collaboration


Dive into the Samuel Cartinhour's collaboration.

Top Co-Authors

Avatar

David J. Schneider

United States Department of Agriculture

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Alan Collmer

Michigan State University

View shared research outputs
Top Co-Authors

Avatar

Paul Stodghill

United States Department of Agriculture

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Genevieve DeClerck

United States Department of Agriculture

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge