Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Samuel D. Wright is active.

Publication


Featured researches published by Samuel D. Wright.


Nature | 2010

NLRP3 inflammasomes are required for atherogenesis and activated by cholesterol crystals

Peter Duewell; Hajime Kono; Katey J. Rayner; Cherilyn M. Sirois; Gregory I. Vladimer; Franz Bauernfeind; George S. Abela; Luigi Franchi; Guillermo Gabriel Nuñez; Max Schnurr; Terje Espevik; Egil Lien; Katherine A. Fitzgerald; Kenneth L. Rock; Kathryn J. Moore; Samuel D. Wright; Veit Hornung; Eicke Latz

The inflammatory nature of atherosclerosis is well established but the agent(s) that incite inflammation in the artery wall remain largely unknown. Germ-free animals are susceptible to atherosclerosis, suggesting that endogenous substances initiate the inflammation. Mature atherosclerotic lesions contain macroscopic deposits of cholesterol crystals in the necrotic core, but their appearance late in atherogenesis had been thought to disqualify them as primary inflammatory stimuli. However, using a new microscopic technique, we revealed that minute cholesterol crystals are present in early diet-induced atherosclerotic lesions and that their appearance in mice coincides with the first appearance of inflammatory cells. Other crystalline substances can induce inflammation by stimulating the caspase-1-activating NLRP3 (NALP3 or cryopyrin) inflammasome, which results in cleavage and secretion of interleukin (IL)-1 family cytokines. Here we show that cholesterol crystals activate the NLRP3 inflammasome in phagocytes in vitro in a process that involves phagolysosomal damage. Similarly, when injected intraperitoneally, cholesterol crystals induce acute inflammation, which is impaired in mice deficient in components of the NLRP3 inflammasome, cathepsin B, cathepsin L or IL-1 molecules. Moreover, when mice deficient in low-density lipoprotein receptor (LDLR) were bone-marrow transplanted with NLRP3-deficient, ASC (also known as PYCARD)-deficient or IL-1α/β-deficient bone marrow and fed on a high-cholesterol diet, they had markedly decreased early atherosclerosis and inflammasome-dependent IL-18 levels. Minimally modified LDL can lead to cholesterol crystallization concomitant with NLRP3 inflammasome priming and activation in macrophages. Although there is the possibility that oxidized LDL activates the NLRP3 inflammasome in vivo, our results demonstrate that crystalline cholesterol acts as an endogenous danger signal and its deposition in arteries or elsewhere is an early cause rather than a late consequence of inflammation. These findings provide new insights into the pathogenesis of atherosclerosis and indicate new potential molecular targets for the therapy of this disease.


Journal of Biological Chemistry | 2001

27-Hydroxycholesterol Is an Endogenous Ligand for Liver X Receptor in Cholesterol-loaded Cells

Xuan Fu; John G. Menke; Yuli Chen; Gaochao Zhou; Karen L. MacNaul; Samuel D. Wright; Carl P. Sparrow; Erik G. Lund

The nuclear receptors liver X receptor α (LXRα) (NR1H3) and LXRβ (NR1H2) are important regulators of genes involved in lipid metabolism, including ABCA1,ABCG1, and sterol regulatory element-binding protein-1c (SREBP-1c). Although it has been demonstrated that oxysterols are LXR ligands, little is known about the identity of the physiological activators of these receptors. Here we confirm earlier studies demonstrating a dose-dependent induction of ABCA1 and ABCG1 in human monocyte-derived macrophages by cholesterol loading. In addition, we show that formation of 27-hydroxycholesterol and cholestenoic acid, products of CYP27 action on cholesterol, is dependent on the dose of cholesterol used to load the cells. Other proposed LXR ligands, including 20(S)-hydroxycholesterol, 22(R)-hydroxycholesterol, and 24(S),25-epoxycholesterol, could not be detected under these conditions. A role for CYP27 in regulation of cholesterol-induced genes was demonstrated by the following findings. 1) Introduction of CYP27 into HEK-293 cells conferred an induction of ABCG1 and SREBP-1c; 2) upon cholesterol loading, CYP27-expressing cells induce these genes to a greater extent than in control cells; 3) in CYP27-deficient human skin fibroblasts, the induction of ABCA1 in response to cholesterol loading was ablated; and 4) in a coactivator association assay, 27-hydroxycholesterol functionally activated LXR. We conclude that 27-hydroxylation of cholesterol is an important pathway for LXR activation in response to cholesterol overload.


Journal of Experimental Medicine | 2005

11β-HSD1 inhibition ameliorates metabolic syndrome and prevents progression of atherosclerosis in mice

Anne Hermanowski-Vosatka; James M. Balkovec; Kang Cheng; Howard Y. Chen; Melba Hernandez; Gloria C. Koo; Cheryl B. Le Grand; Zhihua Li; Joseph M. Metzger; Steven S. Mundt; Heather Noonan; Christian N. Nunes; Steven H. Olson; Bill Pikounis; Ning Ren; Nancy Robertson; James M. Schaeffer; Kashmira Shah; Martin S. Springer; Alison M. Strack; Matthias Strowski; Kenneth K. Wu; Tsuei-Ju Wu; Jianying Xiao; Bei B. Zhang; Samuel D. Wright; Rolf Thieringer

The enzyme 11β–hydroxysteroid dehydrogenase (HSD) type 1 converts inactive cortisone into active cortisol in cells, thereby raising the effective glucocorticoid (GC) tone above serum levels. We report that pharmacologic inhibition of 11β-HSD1 has a therapeutic effect in mouse models of metabolic syndrome. Administration of a selective, potent 11β-HSD1 inhibitor lowered body weight, insulin, fasting glucose, triglycerides, and cholesterol in diet-induced obese mice and lowered fasting glucose, insulin, glucagon, triglycerides, and free fatty acids, as well as improved glucose tolerance, in a mouse model of type 2 diabetes. Most importantly, inhibition of 11β-HSD1 slowed plaque progression in a murine model of atherosclerosis, the key clinical sequela of metabolic syndrome. Mice with a targeted deletion of apolipoprotein E exhibited 84% less accumulation of aortic total cholesterol, as well as lower serum cholesterol and triglycerides, when treated with an 11β-HSD1 inhibitor. These data provide the first evidence that pharmacologic inhibition of intracellular GC activation can effectively treat atherosclerosis, the key clinical consequence of metabolic syndrome, in addition to its salutary effect on multiple aspects of the metabolic syndrome itself.


Cell | 1990

Recognition of a bacterial adhesin by an integrin: Macrophage CR3 (αMβ2, CD11b CD18 ) binds filamentous hemagglutinin of Bordetella pertussis

David A. Relman; Elaine Tuomanen; Stanley Falkow; Douglas T. Golenbock; Kirsi Saukkonen; Samuel D. Wright

Abstract During the course of whooping cough, Bordetella pertussis interacts with alveolar macrophages and other leukocytes on the respiratory epithelium. We report here mechanisms by which these bacteria adhere to human macrophages in vitro. Whole bacteria adhere by means of two proteins, filamentous hemagglutinin (FHA) and pertussis toxin, either of which is sufficient to mediate adherence. FHA interacts with two classes of molecules on macrophages, galactose-containing glycoconjugates and the integrin CR3 ( α M β 2 , CD11bCD18). The interaction between CR3 and FHA involves recognition of the Arg-Gly-Asp (RGD) sequence at positions 1097–1099 in FHA. This study demonstrates that bacterial adherence can be based on the interaction of a bacterial adhesin RGD sequence with an integrin and that bacterial adhesins can have multiple binding sites characteristic of eukaryotic extracellular matrix proteins.


Journal of Immunology | 2000

Deficiency in Inducible Nitric Oxide Synthase Results in Reduced Atherosclerosis in Apolipoprotein E-Deficient Mice

Patricia A. Detmers; Melba Hernandez; John S. Mudgett; Heide Hassing; Charlotte Burton; Steven S. Mundt; Sam Chun; Dan Fletcher; Deborah Card; JeanMarie Lisnock; Reneé Weikel; James D. Bergstrom; Diane Shevell; Anne Hermanowski-Vosatka; Carl P. Sparrow; Yu-Sheng Chao; Daniel J. Rader; Samuel D. Wright; Ellen Puré

Inducible NO synthase (iNOS) present in human atherosclerotic plaques could contribute to the inflammatory process of plaque development. The role of iNOS in atherosclerosis was tested directly by evaluating the development of lesions in atherosclerosis-susceptible apolipoprotein E (apoE)−/− mice that were also deficient in iNOS. ApoE−/− and iNOS−/− mice were cross-bred to produce apoE−/−/iNOS−/− mice and apoE−/−/iNOS+/+ controls. Males and females were placed on a high fat diet at the time of weaning, and atherosclerosis was evaluated at two time points by different methods. The deficiency in iNOS had no effect on plasma cholesterol, triglyceride, or nitrate levels. Morphometric measurement of lesion area in the aortic root at 16 wk showed a 30–50% reduction in apoE−/−/iNOS−/− mice compared with apoE−/−/iNOS+/+ mice. Although the size of the lesions in apoE−/−/iNOS−/− mice was reduced, the lesions maintained a ratio of fibrotic:foam cell-rich:necrotic areas that was similar to controls. Biochemical measurements of aortic cholesterol in additional groups of mice at 22 wk revealed significant 45–70% reductions in both male and female apoE−/−/iNOS−/− mice compared with control mice. The results indicate that iNOS contributes to the size of atherosclerotic lesions in apoE-deficient mice, perhaps through a direct effect at the site of the lesion.


Journal of Immunology | 2000

Activation of Peroxisome Proliferator-Activated Receptor γ Does Not Inhibit IL-6 or TNF-α Responses of Macrophages to Lipopolysaccharide In Vitro or In Vivo

Rolf Thieringer; Judy Fenyk-Melody; Cheryl B. Le Grand; Beverly A. Shelton; Patricia A. Detmers; Elizabeth P. Somers; Linda Carbin; David E. Moller; Samuel D. Wright; Joel P. Berger

We have investigated the potential use of peroxisome proliferator-activated receptor γ (PPARγ) agonists as anti-inflammatory agents in cell-based assays and in a mouse model of endotoxemia. Human peripheral blood monocytes were treated with LPS or PMA and a variety of PPARγ agonists. Although 15-deoxy-Δ12,14-prostaglandin J2 (15d-PGJ2) at micromolar concentrations significantly inhibited the production of TNF-α and IL-6, four other high affinity PPARγ ligands failed to affect cytokine production. Similar results were obtained when the monocytes were allowed to differentiate in culture into macrophages that expressed significantly higher levels of PPARγ or when the murine macrophage cell line RAW 264.7 was used. Furthermore, saturating concentrations of a potent PPARγ ligand not only failed to block cytokine production, but also were unable to block the inhibitory activity of 15d-PGJ2. Thus, activation of PPARγ does not appear to inhibit the production of cytokines by either monocytes or macrophages, and the inhibitory effect observed with 15d-PGJ2 is most likely mediated by a PPARγ-independent mechanism. To examine the anti-inflammatory activity of PPARγ agonists in vivo, db/db mice were treated with a potent thiazolidinedione that lowered their elevated blood glucose and triglyceride levels as expected. When thiazolidinedione-treated mice were challenged with LPS, they displayed no suppression of cytokine production. Rather, their blood levels of TNF-α and IL-6 were elevated beyond the levels observed in control db/db mice challenged with LPS. Comparable results were obtained with the corresponding lean mice. Our data suggest that compounds capable of activating PPARγ in leukocytes will not be useful for the treatment of acute inflammation.


Journal of Biological Chemistry | 2003

Farnesoid X Receptor Activates Transcription of the Phospholipid Pump MDR3

Li Huang; Annie Zhao; Jane-L. Lew; Theresa Zhang; Yaroslav Hrywna; John R. Thompson; Nuria de Pedro; Inmaculada Royo; Richard Blevins; Fernando Pelaez; Samuel D. Wright; Jisong Cui

The human multidrug resistance gene MDR3 encodes a P-glycoprotein that belongs to the ATP-binding cassette transporter family (ABCB4). MDR3 is a critical trans-locator for phospholipids across canalicular membranes of hepatocytes, evidenced by the fact that human MDR3 deficiencies result in progressive familial intrahepatic cholestasis type III. It has been reported previously that MDR3 expression is modulated by hormones, cellular stress, and xenobiotics. Here we show that the MDR3 gene is trans-activated by the farnesoid X receptor (FXR) via a direct binding of FXR/retinoid X receptor α heterodimers to a highly conserved inverted repeat element (a FXR response element) at the distal promoter (-1970 to -1958). In FXR trans-activation assays, both the endogenous FXR agonist chenodeoxycholate and the synthetic agonist GW4064 activated the MDR3 promoter. Deletion or mutation of this inverted repeat element abolished FXR-mediated MDR3 promoter activation. Consistent with these data, MDR3 mRNA was significantly induced by both chenodeoxycholate and GW4064 in primary human hepatocytes in time- and dose-dependent fashions. In conclusion, we demonstrate that MDR3 expression is directly up-regulated by FXR. These results, together with the previous report that the bile salt export pump is a direct FXR target, suggest that FXR coordinately controls secretion of bile salts and phospholipids. Results of this study further support the notion that FXR is a master regulator of lipid metabolism.


Journal of Immunology | 2001

11β-Hydroxysteroid Dehydrogenase Type 1 Is Induced in Human Monocytes upon Differentiation to Macrophages

Rolf Thieringer; Cheryl B. Le Grand; Linda Carbin; Tian-Quan Cai; Birming Wong; Samuel D. Wright; Anne Hermanowski-Vosatka

11β-hydroxysteroid dehydrogenases (11β-HSD) perform prereceptor metabolism of glucocorticoids through interconversion of the active glucocorticoid, cortisol, with inactive cortisone. Although the immunosuppressive and anti-inflammatory activities of glucocorticoids are well documented, the expression of 11β-HSD enzymes in immune cells is not well understood. Here we demonstrate that 11β-HSD1, which converts cortisone to cortisol, is expressed only upon differentiation of human monocytes to macrophages. 11β-HSD1 expression is concomitant with the emergence of peroxisome proliferator activating receptor γ, which was used as a surrogate marker of monocyte differentiation. The type 2 enzyme, 11β-HSD2, which converts cortisol to cortisone, was not detectable in either monocytes or cultured macrophages. Incubation of monocytes with IL-4 or IL-13 induced 11β-HSD1 activity by up to 10-fold. IFN-γ, a known functional antagonist of IL-4 and IL-13, suppressed the induction of 11β-HSD1 by these cytokines. THP-1 cells, a human macrophage-like cell line, expressed 11β-HSD1 and low levels of 11β-HSD2. The expression of 11β-HSD1 in these cells is up-regulated 4-fold by LPS. In summary, we have shown strong expression of 11β-HSD1 in cultured human macrophages and THP-1 cells. The presence of the enzyme in these cells suggests that it may play a role in regulating the immune function of these cells.


Journal of Biological Chemistry | 2007

Effects of pH and Low Density Lipoprotein (LDL) on PCSK9-dependent LDL Receptor Regulation

Timothy S. Fisher; Paola Lo Surdo; Shilpa Pandit; Marco Mattu; Joseph C. Santoro; Doug Wisniewski; Richard T. Cummings; Alessandra Calzetta; Rose M. Cubbon; Paul Fischer; Anil Tarachandani; Raffaele De Francesco; Samuel D. Wright; Carl P. Sparrow; Andrea Carfi; Ayesha Sitlani

Mutations within PCSK9 (proprotein convertase subtilisin/kexin type 9) are associated with dominant forms of familial hyper- and hypocholesterolemia. Although PCSK9 controls low density lipoprotein (LDL) receptor (LDLR) levels post-transcriptionally, several questions concerning its mode of action remain unanswered. We show that purified PCSK9 protein added to the medium of human endothelial kidney 293, HepG2, and Chinese hamster ovary cell lines decreases cellular LDL uptake in a dose-dependent manner. Using this cell-based assay of PCSK9 activity, we found that the relative potencies of several PCSK9 missense mutants (S127R and D374Y, associated with hypercholesterolemia, and R46L, associated with hypocholesterolemia) correlate with LDL cholesterol levels in humans carrying such mutations. Notably, we found that in vitro wild-type PCSK9 binds LDLR with an ∼150-fold higher affinity at an acidic endosomal pH (KD = 4.19 nm) compared with a neutral pH (KD = 628 nm). We also demonstrate that wild-type PCSK9 and mutants S127R and R46L are internalized by cells to similar levels, whereas D374Y is more efficiently internalized, consistent with their affinities for LDLR at neutral pH. Finally, we show that LDL diminishes PCSK9 binding to LDLR in vitro and partially inhibits the effects of secreted PCSK9 on LDLR degradation in cell culture. Together, the results of our biochemical and cell-based experiments suggest a model in which secreted PCSK9 binds to LDLR and directs the trafficking of LDLR to the lysosomes for degradation.


Current Opinion in Immunology | 1991

Multiple receptors for endotoxin

Samuel D. Wright

Recent studies have identified three classes of receptor molecules involved in recognition of endotoxin. Two classes of receptors, the CD18 antigens and the scavenger receptor, recognize lipopolysaccharide directly and function principally in its catabolism. A third molecule, CD14, recognizes lipopolysaccharide with the aid of a serum protein, lipopolysaccharide-binding protein, and may be a principal mediator of secretory responses of leukocytes.

Collaboration


Dive into the Samuel D. Wright's collaboration.

Researchain Logo
Decentralizing Knowledge