Samuel G. Moreno
University of Jaén
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Samuel G. Moreno.
Applied Mathematics Letters | 2009
Samuel G. Moreno; Esther M. García-Caballero
Abstract Little q -Laguerre polynomials { p n ( ⋅ ; a | q ) } n = 0 ∞ are classically defined for 0 q 1 and 0 a q 1 . After extending this family to a new one in which arbitrary real values of the parameter a are allowed, we give an orthogonality condition for those cases for which Favard’s Theorem fails to work.
Journal of Approximation Theory | 2010
Samuel G. Moreno; Esther M. García-Caballero
Abstract Big q -Jacobi polynomials { P n ( ⋅ ; a , b , c ; q ) } n = 0 ∞ are classically defined for 0 a q − 1 , 0 b q − 1 and c 0 . For the family of little q -Jacobi polynomials { p n ( ⋅ ; a , b | q ) } n = 0 ∞ , classical considerations restrict the parameters imposing 0 a q − 1 and b q − 1 . In this work we extend both families in such a way that wider sets of parameters are allowed, and we establish orthogonality conditions for those cases for which Favard’s theorem does not work. As a by-product, we obtain similar results for the families of big and little q -Laguerre polynomials.
Mathematics Magazine | 2013
Samuel G. Moreno; Esther M. García-Caballero
Summary In this article, the authors show that Viètes formula is only the tip of the iceberg. Under the surface, they search for curious and interesting Viète-like infinite products, rare species made of products of nested square roots of 2, but here with some minus signs occurring inside. To explore this fascinating world, they only use the simple trigonometric identity cos x = 2 cos((π + 2x)/4) cos ((π - 2x)/4), combined with a recent formula by L. D. Servi.
College Mathematics Journal | 2016
Samuel G. Moreno
Summary By slightly changing a beautiful and little-known argument by E. L. Stark, we give a short and elementary proof of the celebrated Basel problem.
Applied Mathematics and Computation | 2014
Esther M. García-Caballero; Samuel G. Moreno; Michael Prophet
The main goal of this paper is to link the nth Fibonacci and Lucas numbers through certain infinite products of nested radicals. This work relies on recent results on Viete-like infinite products appeared in Moreno and Garcia-Caballero (2013) 3. We will analyze in detail one particular case of these formulas and we will show how our treatment covers and extends previous results in the literature.
Periodica Mathematica Hungarica | 2003
Esther M. García-Caballero; Samuel G. Moreno; Francisco Marcellán
AbstractIn this contribution we analyze the generating functions for polynomials orthogonal with respect to a symmetric linear functional u, i.e., a linear application in the linear space of polynomials with complex coefficients such that % MATHTYPE!MTEF!2!1!+-% feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWexLMBb50ujb% qeguuDJXwAKbacfiGae8xDau3aaeWaaeaacqWF4baEdaahaaWcbeqa% aGqbaiab+jdaYiab-5gaUjaabUcacaaIXaaaaaGccaGLOaGaayzkaa% Gaeyypa0JaaGimaaaa!44F8!
College Mathematics Journal | 2018
Esther M. García-Caballero; Samuel G. Moreno
Journal of Interdisciplinary Mathematics | 2015
Samuel G. Moreno; Esther M. García-Caballero
u\left( {x^{2n + 1} } \right) = 0
Teaching Mathematics and Computer Science | 2014
Esther M. García-Caballero; Samuel G. Moreno; Michael Prophet
Journal of Mathematical Analysis and Applications | 2012
Samuel G. Moreno; Esther M. García-Caballero
. In some cases we can deduce explicitly the expression for the generating function % MATHTYPE!MTEF!2!1!+-% feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznf% gDOfdaryqr1ngBPrginfgDObYtUvgaiuaacqWFpepudaqadaqaamXv% P5wqonvsaeXbfv3ySLgzaGGbciab+Hha4jab+XcaSiab+Dha3bGaay% jkaiaawMcaaiabg2da9maaqahabaGae43yam2aaSbaaSqaaiab+5ga% UbqabaGccqGFqbaudaWgaaWcbaGae4NBa4gabeaakmaabmaabaGae4% hEaGhacaGLOaGaayzkaaGae43DaC3aaWbaaSqabeaacqGFUbGBaaGc% caGGSaaaleaacqGFUbGBiyaacqqF9aqpcaaIWaaabaqeduuDJXwAKb% Yu51MyVXgaiCaacqaFEisPa0GaeyyeIuoaaaa!64B4!