Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Samuel G. Speciale is active.

Publication


Featured researches published by Samuel G. Speciale.


Neuroscience | 1988

1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced parkinsonian syndrome in Macaca fascicularis: which midbrain dopaminergic neurons are lost?

Dwight C. German; Mark Dubach; S. Askari; Samuel G. Speciale; Douglas M. Bowden

1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) produces, in both human and non-human primates, a syndrome very similar to idiopathic Parkinsons disease. The syndrome is associated with degeneration of the dopamine-containing neurons in the substantia nigra, many of which project to the neostriatum. The purpose of the present study was to quantify the regional distribution of midbrain dopamine neurons remaining after MPTP administration to the monkey (Macaca fascicularis) and to develop alternative procedures for maintaining the normal nutrition in MPTP-treated animals. Three monkeys were treated with MPTP and three served as controls. Representative sections were examined from rostral to caudal through the midbrain dopamine cell nuclei and the location of every tyrosine hydroxylase-containing cell was entered into a computer. Midbrain dopamine neuronal cell loss ranged from 36-78%, being most extensive in the two monkeys which exhibited the most severe parkinsonian syndrome. The greatest cell loss (46-93%) occurred in the substantia nigra pars compacta, or nucleus A9, and the loss was primarily in the ventral portion of the nucleus. Contrary to most previous reports, however, there was also a loss of cells in the ventral tegmental area (28-57%) and ventral reticular formation (33-87%), corresponding to nuclei A10 and A8, respectively. Since neuroanatomical tracing studies have shown that the dorsal and lateral portions of the striatum (areas showing the greatest dopamine depletion after MPTP) receive input from cells in the ventral A9 and from cells in the A8 and A10 areas, the present data suggest that MPTP preferentially destroys dopamine cells that project to the striatum (i.e. the mesostriatal cells).


Behavioural Brain Research | 1995

A functional role for REM sleep in brain maturation

Gerald A. Marks; James P. Shaffery; Arie Oksenberg; Samuel G. Speciale; Howard P. Roffwarg

The biological function of REM sleep is defined in terms of the functions of neural processes that selectively operate during the REM sleep state. The high amounts of REM sleep expressed by the young during a period of central nervous system plasticity suggest that one function of REM sleep is in development. The phenomenon of activity-dependent development has been clearly shown to be one mechanism by which early sensory experience can affect the course of neural development. Activity-dependent development may be a ubiquitous process in brain maturation by which activity in one brain region can influence the developmental course of other regions. We hypothesize an ontogenetic function of REM sleep; namely, the widespread control of neuronal activity exerted by specific REM sleep processes help to direct brain maturation through activity-dependent developmental mechanisms. Preliminary tests of the hypothesis have been conducted in the developing feline visual system, which has long been known to incorporate information derived from visual experience in establishing neuronal connectivity. We find that suppression of REM sleep processes by an instrumental REM deprivation procedure results in a significant enhancement of the effects of altered visual experience by monocular occlusion. Bilateral brainstem lesions that selectively block the occurrence of ponto-geniculo-occipital (PGO) waves are sufficient to produce similar results. These data indicate that the propagation of phasic influences during REM sleep interacts with other processes subserving neural development. This source of influence appears not to derive from the environment but rather stems from an intrinsic source of genetic origin. Examination of the neural activity associated with PGO waves in the lateral geniculate nucleus reveals a distribution of facilitatory influence markedly different from that induced by visual experience. We conclude that REM sleep directs the course of brain maturation in early life through the control of neural activity.


Neurotoxicology and Teratology | 2002

MPTP: Insights into parkinsonian neurodegeneration

Samuel G. Speciale

MPTP burst upon the medical landscape two decades ago, first as a mysterious parkinsonian epidemic, triggering an unparalleled quest for the toxins identity, and closely followed by an intense pursuit of its cellular mechanisms of action. MPTP treatment created an animal model of many features of Parkinsons disease (PD), used primarily in primates and later in mice. The critical role of oxidative stress damage to vulnerable dopamine neurons, as well as for neurodegenerative diseases in general, emerged from MPTP neurotoxicity. A remarkable cross-fertilization of basic and clinical findings, including genetic and epidemiologic studies, has greatly advanced our understanding of PD and revealed multiple factors contributing to the parkinsonian phenotypes. Brain imaging localizes sites of action and provides potential presymptomatic diagnostic testing. Epidemiologic reports linking PD with pesticide exposure were complimented by supportive evidence from biochemical studies of MPTP and structurally related compounds, especially after low-level, long-term exposure. Genetic studies on the role of risk genes, such as alpha-synuclein or parkin, have been validated by biochemical, anatomical and neurochemical investigations showing factors interacting to produce pathophysiology in the animal model. Focusing on the pivotal role of mitochondria, subcellular pathways participating in cell death have been clarified by unraveling similar sites of action of MPTP. Along the way, compounds antagonizing or potentiating MPTP effects indicated new PD therapies, some of the former achieving clinical trials. The future is encouraging for combating PD and will continue to benefit from the MPTP neurotoxicity model.


The Journal of Comparative Neurology | 2003

Cholinergic neuropathology in a mouse model of Alzheimer's disease

Dwight C. German; Umar Yazdani; Samuel G. Speciale; Parichehr Pasbakhsh; Dora Games; Chang Lin Liang

Transgenic mice overexpressing mutant human amyloid precursor protein (PDAPP mice) develop several Alzheimers disease (AD)–like lesions including an age‐related accumulation of amyloid‐β (Aβ)–containing neuritic plaques. Although aged, heterozygous PDAPP mice also exhibit synaptic and glial cell changes characteristic of AD pathology, no evidence of widespread neuronal loss has been observed. The present study sought to determine whether homozygous PDAPP mice, which express very high levels of Aβ peptide, exhibit AD‐like cholinergic degenerative changes, and whether the changes parallel the deposition of Aβ plaques. Mice were examined at 2 and 4 months and at 1 and 2 years of age. There was an age‐related increase in the density of Aβ plaques in the cortex and hippocampus of the PDAPP animals; at 4 months of age there were very few plaques, and at 2 years there was a very high density of plaques. There was an age‐related reduction in the density of cholinergic nerve terminals in the cerebral cortex; at 2 months there was a normal density of nerve terminals, but as early as age 4 months there was an approximately 50% reduction. However, at age 2 years there was no difference in the number or size of basal forebrain cholinergic somata compared with 2‐month‐old PDAPP mice. These data indicated that the homozygous PDAPP mouse exhibits cholinergic nerve terminal degenerative pathology and that the cortical neurodegenerative changes occur before the deposition of Aβ‐containing neuritic plaques. J. Comp. Neurol. 462:371–381, 2003.


Experimental Brain Research | 1979

Substance P afferents from the habenula innervate the dorsal raphe nucleus

Leonard M. Neckers; Joan P. Schwartz; R. Jed Wyatt; Samuel G. Speciale

SummaryThe lateral habenula nuclei of the diencephalon innervate the median and dorsal raphe nuclei of the brainstem. Habenula lesions lead to decreased substance P levels in the dorsal but not median raphe within 24 hours. From this data, we propose a peptidergic innervation of the dorsal raphe nucleus by the habenula nuclei.


Neuroscience | 1998

THE NEUROTOXIN 1-METHYL-4- PHENYLPYRIDINIUM IS SEQUESTERED WITHIN NEURONS THAT CONTAIN THE VESICULAR MONOAMINE TRANSPORTER

Samuel G. Speciale; C.-L Liang; Patricia K. Sonsalla; Robert H. Edwards; Dwight C. German

The neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine produces a parkinsonian syndrome in man and experimental animals. The toxic metabolite of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine, 1-methyl-4-phenylpyridinium, exhibits high-affinity uptake by plasma membrane monoamine transporters and also by the vesicular monoamine transporter. Using autoradiographic and immunohistochemical methods in mice, we demonstrate the accumulation of [3H]1-methyl-4-phenylpyridinium within neurons that contain the vesicular monoamine transporter, following systemic administration of [3H]1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine. Within 1-24 h following the intraperitoneal administration of 10 microg/kg of [3H]1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine, [3H]1-methyl-4-phenylpyridine labelling was found within such regions as the locus coeruleus, dorsal, medial, and pallidal raphe nuclei, substantia nigra pars compacta, ventral tegmental area, and paraventricular nucleus of the hypothalamus. These regions all contain monoaminergic somata as defined by immunohistochemical staining with an antibody against the vesicular monoamine transporter. There was a positive relationship between the density of [3H]1-methyl-4-phenylpyridinium label and the density of vesicular monoamine transporter immunoreactivity: the highest densities of both were found in the locus coeruleus and lowest densities in the midbrain dopaminergic neurons. In addition, [3H]1-methyl-4-phenylpyridinium labelling was detected in the bed nucleus of the stria terminalis and paraventricular nucleus of the thalamus, which also contained vesicular monoamine transporter immunoreactive nerve terminals. The present data indicate that low doses of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine cause a significant accumulation of 1-methyl-4-phenylpyridinium within monoaminergic somata in parallel with the amount of vesicular monoamine transporter in the neuron. Since nuclei with intense labelling are not damaged by doses of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine that are toxic to midbrain dopaminergic neurons, these data are consistent with the hypothesis that sequestration of 1-methyl-4-phenylpyridinium within monoaminergic synaptic vesicles can protect the neurons from degeneration caused by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine.


Developmental Brain Research | 1999

Ponto-geniculo-occipital-wave suppression amplifies lateral geniculate nucleus cell-size changes in monocularly deprived kittens

James P. Shaffery; Howard P. Roffwarg; Samuel G. Speciale; Gerald A. Marks

We have previously shown that during the post-natal critical period of development of the cat visual system, 1 week of instrumental rapid eye movement (REM) sleep deprivation (IRSD) during 2 weeks of monocular deprivation (MD) results in significant amplification of the effects of solely the 2-week MD on cell-size in the binocular segment of the lateral geniculate nucleus (LGN) [36,40]. In this study, we examined whether elimination of ponto-geniculo-occipital (PGO)-wave phasic activity in the LGN during REM sleep (REMS), rather than suppression of all REMS state-related activity, would similarly yield enhanced plasticity effects on cell-size in LGN. PGO-activity was eliminated in LGN by bilateral pontomesencephalic lesions [8,32]. This method of removing phasic activation at the level of the LGN preserved sleep and wake proportions as well as the tonic activities (low voltage, fast frequency ECoG and low amplitude EMG) that characterize REM sleep. The lesions were performed in kittens on post-natal day 42, at the end of the first week of the 2-week period of MD, the same age when IRSD was started in the earlier study. LGN interlaminar cell-size disparity increased in the PGO-wave-suppressed animals as it had in behaviorally REM sleep-deprived animals. Smaller A1/A-interlaminar ratios reflect the increased disparity effect in both the REM sleep- and PGO-suppressed groups compared to animals subjected to MD-alone. With IRSD, the effect was achieved because the occluded eye-related, LGN A1-lamina cells tended to be smaller relative to their size after MD-alone, whereas after PGO-suppressing lesions, the A1-lamina cells retained their size and the non-occluded eye-related, A-lamina cells tended to be larger than after MD-alone. Despite this difference, for which several possible explanations are offered, these A1/A-interlaminar ratio data indicate that in conjunction either with suppression of the whole of the REMS state or selective removal of REM sleep phasic activity at the LGN, altered visual input evokes more LGN cell plasticity during the developmental period than it would otherwise. These data further support involvement of the REM sleep state in reducing susceptibility to plasticity changes and undesirable variability in the course of normative CNS growth and maturation.


Brain Research Bulletin | 1986

Activation of specific central dopamine pathways: Locomotion and footshock

Samuel G. Speciale; Joseph D. Miller; Brian A. McMillen; Dwight C. German

The present study examined whether neostriatal monoamine biochemistry was activated in a bilaterally symmetrical fashion during a non-lateralized forward locomotor task, and whether specific midbrain dopamine (DA) neuronal systems were influenced selectively by specific behavioral tasks. Monoamine concentrations (DA, serotonin and their metabolites) were measured, using high pressure liquid chromatography, in the neostriatum, nucleus accumbens, and medial prefrontal cortex in rats that were either induced to walk forward in a motorized rotating wheel (two speeds) or were exposed to footshock stress (two shock intensities). Our results demonstrate that during locomotor behavior there is an increase in neostriatal DA metabolism, but not in serotonin metabolism. Furthermore, the increase in DA metabolism was found: (a) in both right and left neostriatal nuclei, but with significantly less asymmetry than occurred in non-locomoting control rats; and (b) within the neostriatum at both speeds and also in the nucleus accumbens at the higher speed. Locomotion had no effect on DA metabolism in the prefrontal cortex. With both shock intensities there was increased DA metabolism in the prefrontal cortex, whereas during the low shock intensity there was also an increased DA metabolism in the nucleus accumbens. At the high level of footshock, which evoked jumping and running escape behavior, there was also an increase in neostriatal DA metabolism. These data indicate that a non-lateralized forward locomotor task activates DA metabolism primarily in the less metabolically active hemisphere. Secondly, we found that specific subgroups of midbrain DA neurons can be selectively activated by specific behavioral tasks.


Neuroscience | 2003

Enhancement of rapid eye movement sleep in the rat by actions at A1 and A2a adenosine receptor subtypes with a differential sensitivity to atropine

Gerald A. Marks; James P. Shaffery; Samuel G. Speciale; Christian G. Birabil

The adenosine agonist cyclohexaladenosine injected into the medial pontine reticular formation of the rat induces a long-lasting increase in rapid eye movement sleep. To investigate the adenosine receptor-subtype(s) mediating this effect, the dose-response relationships for increasing rapid eye movement sleep by two highly selective adenosine receptor agonists were compared. Rats were surgically prepared for chronic sleep recording and bilateral guide cannulae were aimed at medial sites in the caudal, oral pontine reticular formation. Injections were made unilaterally in 60 nl volumes within 1 h after lights-on. The adenosine agonists used were A1-selective cyclohexaladenosine (10(-6)-10(-4) M) and A2a-selective CGS 21680 (10(-7)-10(-3) M). Each animal also received a series of three, paired-consecutive injections of the muscarinic receptor antagonist atropine (4x10(-3) M) followed by the lowest effective dose of each agonist or saline as control. The A2a receptor agonist, CGS 21680, was one order of magnitude more potent than the A1 receptor agonist, cyclohexaladenosine, in inducing rapid eye movement sleep increases. Preinjection of atropine at a dose that did not itself affect rapid eye movement sleep resulted in antagonism of CGS 21680, but not cyclohexaladenosine-induced rapid eye movement sleep. The differential sensitivity of these ligands to antagonism by atropine supports the conclusion that both A1 and A2a adenosine receptor subtypes in the reticular formation subserve agonist-induced rapid eye movement sleep and that they do so by independent mechanisms. The A2a mechanism requires the cholinergic system and may act through the increased release of acetylcholine. The A1 mechanism operates at a different locus possibly through an inhibition of GABA neurotransmission.


European Journal of Pharmacology | 1984

Naloxone antagonism of stress-induced augmentation of frontal cortex dopamine metabolism.

Joseph D. Miller; Samuel G. Speciale; Brian A. McMillen; Dwight C. German

Foot shock stress selectively elevates dopamine metabolism in the medial frontal cortex but not nucleus accumbens or caudate nucleus. Pretreatment with a low dose of naloxone, an opiate antagonist, reversed the elevation in medial frontal cortex dopamine metabolism observed after foot shock. These data support the hypothesis that the stress-induced release of endogenous opioids cause an excitation of mesocortical dopamine neurons.

Collaboration


Dive into the Samuel G. Speciale's collaboration.

Top Co-Authors

Avatar

Dwight C. German

University of Texas Southwestern Medical Center

View shared research outputs
Top Co-Authors

Avatar

Gerald A. Marks

University of Texas Southwestern Medical Center

View shared research outputs
Top Co-Authors

Avatar

Howard P. Roffwarg

University of Mississippi Medical Center

View shared research outputs
Top Co-Authors

Avatar

James P. Shaffery

University of Mississippi Medical Center

View shared research outputs
Top Co-Authors

Avatar

Chang Lin Liang

University of Texas Southwestern Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Brian A. McMillen

University of Texas Health Science Center at San Antonio

View shared research outputs
Top Co-Authors

Avatar

Christian G. Birabil

University of Texas Southwestern Medical Center

View shared research outputs
Top Co-Authors

Avatar

Gregory A. Mihailoff

University of Mississippi Medical Center

View shared research outputs
Researchain Logo
Decentralizing Knowledge