Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Samuel J. Barnes is active.

Publication


Featured researches published by Samuel J. Barnes.


The Neuroscientist | 2010

Sensory Experience and Cortical Rewiring

Samuel J. Barnes; Gerald T. Finnerty

Adult primary sensory cortex is not hard wired, but adapts to sensory experience. The cellular basis for cortical plasticity involves a combination of functional and structural changes in cortical neurons and the connections between them. Functional changes such as synaptic strengthening have been the focus of many investigations. However, structural modifications to the connections between neurons play an important role in cortical plasticity. In this review, the authors focus on structural remodeling that leads to rewiring of cortical circuits. Recent work has identified axonal remodeling, growth of new dendritic spines, and synapse turnover as important structural mechanisms for experience-dependent plasticity in mature cortex. These findings have begun to unravel how rewiring occurs in adult neocortex and offer new insights into the cellular mechanisms for learning and memory.


Cerebral Cortex | 2014

Pansynaptic Enlargement at Adult Cortical Connections Strengthened by Experience

Claire E. Cheetham; Samuel J. Barnes; Giorgia Albieri; Graham Knott; Gerald T. Finnerty

Behavioral experience alters the strength of neuronal connections in adult neocortex. These changes in synaptic strength are thought to be central to experience-dependent plasticity, learning, and memory. However, it is not known how changes in synaptic transmission between neurons become persistent, thereby enabling the storage of previous experience. A long-standing hypothesis is that altered synaptic strength is maintained by structural modifications to synapses. However, the extent of synaptic modifications and the changes in neurotransmission that the modifications support remain unclear. To address these questions, we recorded from pairs of synaptically connected layer 2/3 pyramidal neurons in the barrel cortex and imaged their contacts with high-resolution confocal microscopy after altering sensory experience by whisker trimming. Excitatory connections strengthened by experience exhibited larger axonal varicosities, dendritic spines, and interposed contact zones. Electron microscopy showed that contact zone size was strongly correlated with postsynaptic density area. Therefore, our findings indicate that whole synapses are larger at strengthened connections. Synaptic transmission was both stronger and more reliable following experience-dependent synapse enlargement. Hence, sensory experience modified both presynaptic and postsynaptic function. Our findings suggest that the enlargement of synaptic contacts is an integral part of long-lasting strengthening of cortical connections and, hence, of information storage in the neocortex.


Neuron | 2015

Subnetwork-Specific Homeostatic Plasticity in Mouse Visual Cortex In Vivo

Samuel J. Barnes; Rosanna P. Sammons; R. Irene Jacobsen; Jennifer Mackie; Georg B. Keller; Tara Keck

Summary Homeostatic regulation has been shown to restore cortical activity in vivo following sensory deprivation, but it is unclear whether this recovery is uniform across all cells or specific to a subset of the network. To address this issue, we used chronic calcium imaging in behaving adult mice to examine the activity of individual excitatory and inhibitory neurons in the same region of the layer 2/3 monocular visual cortex following enucleation. We found that only a fraction of excitatory neurons homeostatically recover activity after deprivation and inhibitory neurons show no recovery. Prior to deprivation, excitatory cells that did recover were more likely to have significantly correlated activity with other recovering excitatory neurons, thus forming a subnetwork of recovering neurons. These network level changes are accompanied by a reduction in synaptic inhibition onto all excitatory neurons, suggesting that both synaptic mechanisms and subnetwork activity are important for homeostatic recovery of activity after deprivation.


Cerebral Cortex | 2015

Rapid Bidirectional Reorganization of Cortical Microcircuits

Giorgia Albieri; Samuel J. Barnes; Benito de Celis Alonso; Claire E. Cheetham; Clarissa E. J. Edwards; Andrew S. Lowe; Harini Karunaratne; John P. Dear; Ka-Lok Lee; Gerald T. Finnerty

Mature neocortex adapts to altered sensory input by changing neural activity in cortical circuits. The underlying cellular mechanisms remain unclear. We used blood oxygen level-dependent (BOLD) functional magnetic resonance imaging (fMRI) to show reorganization in somatosensory cortex elicited by altered whisker sensory input. We found that there was rapid expansion followed by retraction of whisker cortical maps. The cellular basis for the reorganization in primary somatosensory cortex was investigated with paired electrophysiological recordings in the periphery of the expanded whisker representation. During map expansion, the chance of finding a monosynaptic connection between pairs of pyramidal neurons increased 3-fold. Despite the rapid increase in local excitatory connectivity, the average strength and synaptic dynamics did not change, which suggests that new excitatory connections rapidly acquire the properties of established excitatory connections. During map retraction, entire excitatory connections between pyramidal neurons were lost. In contrast, connectivity between pyramidal neurons and fast spiking interneurons was unchanged. Hence, the changes in local excitatory connectivity did not occur in all circuits involving pyramidal neurons. Our data show that pyramidal neurons are recruited to and eliminated from local excitatory networks over days. These findings suggest that the local excitatory connectome is dynamic in mature neocortex.


Neuron | 2017

Deprivation-Induced Homeostatic Spine Scaling In Vivo Is Localized to Dendritic Branches that Have Undergone Recent Spine Loss

Samuel J. Barnes; Eleonora Franzoni; R. Irene Jacobsen; Ferenc Erdélyi; Gábor Szabó; Claudia Clopath; Georg B. Keller; Tara Keck

Summary Synaptic scaling is a key homeostatic plasticity mechanism and is thought to be involved in the regulation of cortical activity levels. Here we investigated the spatial scale of homeostatic changes in spine size following sensory deprivation in a subset of inhibitory (layer 2/3 GAD65-positive) and excitatory (layer 5 Thy1-positive) neurons in mouse visual cortex. Using repeated in vivo two-photon imaging, we find that increases in spine size are tumor necrosis factor alpha (TNF-α) dependent and thus are likely associated with synaptic scaling. Rather than occurring at all spines, the observed increases in spine size are spatially localized to a subset of dendritic branches and are correlated with the degree of recent local spine loss within that branch. Using simulations, we show that such a compartmentalized form of synaptic scaling has computational benefits over cell-wide scaling for information processing within the cell.


The Journal of Neuroscience | 2015

Nonlinear Transfer of Signal and Noise Correlations in Cortical Networks

Dmitry R. Lyamzin; Samuel J. Barnes; Roberta Donato; Jose A. Garcia-Lazaro; Tara Keck; Nicholas A. Lesica

Signal and noise correlations, a prominent feature of cortical activity, reflect the structure and function of networks during sensory processing. However, in addition to reflecting network properties, correlations are also shaped by intrinsic neuronal mechanisms. Here we show that spike threshold transforms correlations by creating nonlinear interactions between signal and noise inputs; even when input noise correlation is constant, spiking noise correlation varies with both the strength and correlation of signal inputs. We characterize these effects systematically in vitro in mice and demonstrate their impact on sensory processing in vivo in gerbils. We also find that the effects of nonlinear correlation transfer on cortical responses are stronger in the synchronized state than in the desynchronized state, and show that they can be reproduced and understood in a model with a simple threshold nonlinearity. Since these effects arise from an intrinsic neuronal property, they are likely to be present across sensory systems and, thus, our results are a critical step toward a general understanding of how correlated spiking relates to the structure and function of cortical networks.


The Journal of Neuroscience | 2015

Delayed and Temporally Imprecise Neurotransmission in Reorganizing Cortical Microcircuits

Samuel J. Barnes; X Claire E. Cheetham; Yan Liu; Sophie H. Bennett; Giorgia Albieri; X Anne A. Jorstad; Graham Knott; Gerald T. Finnerty

Synaptic neurotransmission is modified at cortical connections throughout life. Varying the amplitude of the postsynaptic response is one mechanism that generates flexible signaling in neural circuits. The timing of the synaptic response may also play a role. Here, we investigated whether weakening and loss of an entire connection between excitatory cortical neurons was foreshadowed in the timing of the postsynaptic response. We made electrophysiological recordings in rat primary somatosensory cortex that was undergoing experience-dependent loss of complete local excitatory connections. The synaptic latency of pyramid–pyramid connections, which typically comprise multiple synapses, was longer and more variable. Connection strength and latency were not correlated. Instead, prolonged latency was more closely related to progression of connection loss. The action potential waveform and axonal conduction velocity were unaffected, suggesting that the altered timing of neurotransmission was attributable to a synaptic mechanism. Modeling studies indicated that increasing the latency and jitter at a subset of synapses reduced the number of action potentials fired by a postsynaptic neuron. We propose that prolonged synaptic latency and diminished temporal precision of neurotransmission are hallmarks of impending loss of a cortical connection.


The Journal of Neuroscience | 2014

A Role for Short-Lived Synapses in Adult Cortex?

Samuel J. Barnes; Claire E. Cheetham

Longitudinal imaging studies of individual neurons in vivo have greatly enhanced our understanding of the rewiring that the adult brain is capable of, both during normal experience and in response to altered sensory input or learning. Most of these studies have focused on dendritic spines, tiny


Neurophotonics | 2017

Mammalian cortical voltage imaging using genetically encoded voltage indicators: a review honoring professor Amiram Grinvald

Chenchen Song; Samuel J. Barnes; Thomas Knöpfel

Abstract. The pioneering work of Amiram Grinvald established voltage-sensitive dye imaging (VSDI) in the mammalian cortex in the 1980s and inspired decades of cortical voltage imaging and the associated technological developments. The recent conception and development of genetically encoded voltage indicators (GEVIs) overcome many of the limitations of classical VSDI, and open experimental approaches that provide accruing support for orchestrated neuronal circuit dynamics of spatially distributed neuronal circuit underlying behaviors. We will review recent achievements using GEVIs to optically monitor the cortical activity in mammalian brains in vivo and provide a perspective for potential future directions.


Cell Reports | 2018

Size-Dependent Axonal Bouton Dynamics following Visual Deprivation In Vivo

Rosanna P. Sammons; Claudia Clopath; Samuel J. Barnes

Summary Persistent synapses are thought to underpin the storage of sensory experience, yet little is known about their structural plasticity in vivo. We investigated how persistent presynaptic structures respond to the loss of primary sensory input. Using in vivo two-photon (2P) imaging, we measured fluctuations in the size of excitatory axonal boutons in L2/3 of adult mouse visual cortex after monocular enucleation. The average size of boutons did not change after deprivation, but the range of bouton sizes was reduced. Large boutons decreased, and small boutons increased. Reduced bouton variance was accompanied by a reduced range of correlated calcium-mediated neural activity in L2/3 of awake animals. Network simulations predicted that size-dependent plasticity may promote conditions of greater bidirectional plasticity. These predictions were supported by electrophysiological measures of short- and long-term plasticity. We propose size-dependent dynamics facilitate cortical reorganization by maximizing the potential for bidirectional plasticity.

Collaboration


Dive into the Samuel J. Barnes's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Claire E. Cheetham

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Graham Knott

École Polytechnique Fédérale de Lausanne

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge