Samuel J. Goodchild
University of British Columbia
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Samuel J. Goodchild.
The Journal of General Physiology | 2012
Sora Lee; Samuel J. Goodchild; Christopher A. Ahern
Recent structural breakthroughs with the voltage-gated sodium channel from Arcobacter butzleri suggest that such bacterial channels may provide a structural platform to advance the understanding of eukaryotic sodium channel gating and pharmacology. We therefore set out to determine whether compounds known to interact with eukaryotic NaVs could also inhibit the bacterial channel from Bacillus halodurans and NaChBac and whether they did so through similar mechanisms as in their eukaryotic homologues. The data show that the archetypal local anesthetic (LA) lidocaine inhibits resting NaChBac channels with a dissociation constant (Kd) of 260 µM, and channels displayed a left-shifted steady-state inactivation gating relationship in the presence of the drug. Extracellular application of QX-314 to expressed NaChBac channels had no effect on sodium current, whereas internal exposure via injection of a bolus of the quaternary derivative rapidly reduced sodium conductance, consistent with a hydrophilic cytoplasmic access pathway to an internal binding site. However, the neutral derivative benzocaine applied externally inhibited NaChBac channels, suggesting that hydrophobic pathways can also provide drug access to inhibit channels. Alternatively, ranolazine, a putative preopen state blocker of eukaryotic NaVs, displayed a Kd of 60 µM and left-shifted the NaChBac activation-voltage relationship. In each case, block enhanced entry into the inactivated state of the channel, an effect that is well described by a simple kinetic scheme. The data suggest that although significant differences exist, LA block of eukaryotic NaVs also occurs in bacterial sodium channels and that NaChBac shares pharmacological homology to the resting state of vertebrate NaV homologues.
The Journal of General Physiology | 2013
Zhuren Wang; Ying Dou; Samuel J. Goodchild; Zeineb Es-Salah-Lamoureux; David Fedida
The human ether-á-go-go–related gene (hERG) K+ channel encodes the pore-forming α subunit of the rapid delayed rectifier current, IKr, and has unique activation gating kinetics, in that the α subunit of the channel activates and deactivates very slowly, which focuses the role of IKr current to a critical period during action potential repolarization in the heart. Despite its physiological importance, fundamental mechanistic properties of hERG channel activation gating remain unclear, including how voltage-sensor movement rate limits pore opening. Here, we study this directly by recording voltage-sensor domain currents in mammalian cells for the first time and measuring the rates of voltage-sensor modification by [2-(trimethylammonium)ethyl] methanethiosulfonate chloride (MTSET). Gating currents recorded from hERG channels expressed in mammalian tsA201 cells using low resistance pipettes show two charge systems, defined as Q1 and Q2, with V1/2’s of −55.7 (equivalent charge, z = 1.60) and −54.2 mV (z = 1.30), respectively, with the Q2 charge system carrying approximately two thirds of the overall gating charge. The time constants for charge movement at 0 mV were 2.5 and 36.2 ms for Q1 and Q2, decreasing to 4.3 ms for Q2 at +60 mV, an order of magnitude faster than the time constants of ionic current appearance at these potentials. The voltage and time dependence of Q2 movement closely correlated with the rate of MTSET modification of I521C in the outermost region of the S4 segment, which had a V1/2 of −64 mV and time constants of 36 ± 8.5 ms and 11.6 ± 6.3 ms at 0 and +60 mV, respectively. Modeling of Q1 and Q2 charge systems showed that a minimal scheme of three transitions is sufficient to account for the experimental findings. These data point to activation steps further downstream of voltage-sensor movement that provide the major delays to pore opening in hERG channels.
Biophysical Journal | 2015
Samuel J. Goodchild; Logan C. Macdonald; David Fedida
KV11.1 voltage-gated K(+) channels are noted for unusually slow activation, fast inactivation, and slow deactivation kinetics, which tune channel activity to provide vital repolarizing current during later stages of the cardiac action potential. The bulk of charge movement in human ether-a-go-go-related gene (hERG) is slow, as is return of charge upon repolarization, suggesting that the rates of hERG channel opening and, critically, that of deactivation might be determined by slow voltage sensor movement, and also by a mode-shift after activation. To test these ideas, we compared the kinetics and voltage dependence of ionic activation and deactivation with gating charge movement. At 0 mV, gating charge moved ∼threefold faster than ionic current, which suggests the presence of additional slow transitions downstream of charge movement in the physiological activation pathway. A significant voltage sensor mode-shift was apparent by 24 ms at +60 mV in gating currents, and return of charge closely tracked pore closure after pulses of 100 and 300 ms duration. A deletion of the N-terminus PAS domain, mutation R4AR5A or the LQT2-causing mutation R56Q gave faster-deactivating channels that displayed an attenuated mode-shift of charge. This indicates that charge movement is perturbed by N- and C-terminus interactions, and that these domain interactions stabilize the open state and limit the rate of charge return. We conclude that slow on-gating charge movement can only partly account for slow hERG ionic activation, and that the rate of pore closure has a limiting role in the slow return of gating charges.
Channels | 2014
Samuel J. Goodchild; David Fedida
We recently reported gating currents recorded from hERG channels expressed in mammalian TSA cells and assessed the kinetics at different voltages. We detected 2 distinct components of charge movement with the bulk of the charge being carried by a slower component. Here we compare our findings in TSA cells with recordings made from oocytes using the Cut Open Vaseline Gap clamp (COVG) and go on to directly compare activation of gating charge and ionic currents at 0 and +60 mV. The data show that gating charge saturates and moves more rapidly than ionic current activates suggesting a transition downstream from the movement of the bulk of gating charge is rate limiting for channel opening.
Channels | 2012
Sora Lee; Samuel J. Goodchild; Christopher A. Ahern
In our recent publication, we describe the local anesthetic (LA) inhibition of the prokaryotic voltage gated sodium channel NaChBac. Despite the numerous functional and putative structural differences with the mammalian sodium channels, the data show that LA compounds effectively and reversibly inhibit NaChBac channels in a concentration range similar to resting blockade on eukaryotic Navs. In addition to current reduction, LA application accelerated channel inactivation kinetics of NaChBac which could be accounted for in a simple state-model whereby local anesthetics increase the probability of entering the inactivated state. We have further explored what state (or states) local anesthetic blockade of NaChBac could pertain to eukaryotic sodium channels, and what molecular similarities exist between these disparate channel families. Here we show that the rate of recovery from inactivation remains unaffected in the presence of local anesthetics. Further, we show that two sites that support use-dependent inhibition in eukaryotic channels, do not affect block to the same extent when mutated in NaChBac channels. The data indicate that the molecular determinants and the inherent mechanisms for LA block are likely to be divergent between bacterial and eukaryotic Navs, but future experiments will help define possible similarities.
The Journal of General Physiology | 2012
Samuel J. Goodchild; Hongjian Xu; Zeineb Es-Salah-Lamoureux; Christopher A. Ahern; David Fedida
The open state of voltage-gated potassium (Kv) channels is associated with an increased stability relative to the pre-open closed states and is reflected by a slowing of OFF gating currents after channel opening. The basis for this stabilization is usually assigned to intrinsic structural features of the open pore. We have studied the gating currents of Kv1.2 channels and found that the stabilization of the open state is instead conferred largely by the presence of cations occupying the inner cavity of the channel. Large impermeant intracellular cations such as N-methyl-d-glucamine (NMG+) and tetraethylammonium cause severe slowing of channel closure and gating currents, whereas the smaller cation, Cs+, displays a more moderate effect on voltage sensor return. A nonconducting mutant also displays significant open state stabilization in the presence of intracellular K+, suggesting that K+ ions in the intracellular cavity also slow pore closure. A mutation in the S6 segment used previously to enlarge the inner cavity (Kv1.2-I402C) relieves the slowing of OFF gating currents in the presence of the large NMG+ ion, suggesting that the interaction site for stabilizing ions resides within the inner cavity and creates an energetic barrier to pore closure. The physiological significance of ionic occupation of the inner cavity is underscored by the threefold slowing of ionic current deactivation in the wild-type channel compared with Kv1.2-I402C. The data suggest that internal ions, including physiological concentrations of K+, allosterically regulate the deactivation kinetics of the Kv1.2 channel by impairing pore closure and limiting the return of voltage sensors. This may represent a primary mechanism by which Kv channel deactivation kinetics is linked to ion permeation and reveals a novel role for channel inner cavity residues to indirectly regulate voltage sensor dynamics.
Frontiers in Pharmacology | 2012
Samuel J. Goodchild; David Fedida
Voltage-sensing domains (VSDs) of Kv channels control ionic conductance through coupling of the movement of charged residues in the S4 segment to conformational changes at the cytoplasmic region of the pore domain, that allow K+ ions to flow. Conformational transitions within the VSD are induced by changes in the applied voltage across the membrane field. However, several other factors not directly linked to the voltage-dependent movement of charged residues within the voltage sensor impact the dynamics of the voltage sensor, such as inactivation, ionic conductance, intracellular ion identity, and block of the channel by intracellular ligands. The effect of intracellular ions on voltage sensor dynamics is of importance in the interpretation of gating current measurements and the physiology of pore/voltage sensor coupling. There is a significant amount of variability in the reported kinetics of voltage sensor deactivation kinetics of Kv channels attributed to different mechanisms such as open state stabilization, immobilization, and relaxation processes of the voltage sensor. Here we separate these factors and focus on the causal role that intracellular ions can play in allosterically modulating the dynamics of Kv voltage sensor deactivation kinetics. These considerations are of critical importance in understanding the molecular determinants of the complete channel gating cycle from activation to deactivation.
Biophysical Journal | 2011
Zeineb Es-Salah-Lamoureux; Ping Yu Xiong; Samuel J. Goodchild; Christopher A. Ahern; David Fedida
G628S is a mutation in the signature sequence that forms the selectivity filter of the human ether-a-go-go-related gene (hERG) channel (GFG) and is associated with long-QT2 syndrome. G628S channels are known to have a dominant-negative effect on hERG currents, and the mutant is therefore thought to be nonfunctional. This study aims to assess the physiological mechanism that prevents the surface-expressing G628S channels from conducting ions. We used voltage-clamp fluorimetry along with two-microelectrode voltage clamping in Xenopus oocytes to confirm that the channels express well at the surface, and to show that they are actually functional, with activation kinetics comparable to that of wild-type, and that the mutation leads to a reduced selectivity to potassium. Although ionic currents are not detected in physiological solutions, removing extracellular K(+) results in the appearance of an inward Na(+)-dependent current. Using whole-cell patch clamp in mammalian transfected cells, we demonstrate that the G628S channels conduct Na(+), but that this can be blocked by both intracellular and higher-than-physiological extracellular K(+). Using solutions devoid of K(+) allows the appearance of nA-sized Na(+) currents with activation and inactivation gating analogous to wild-type channels. The G628S channels are functionally conducting but are normally blocked by intracellular K(+).
American Journal of Physiology-cell Physiology | 2013
Ying Dou; Samuel J. Goodchild; Robert Vander Velde; Yue Wu; David Fedida
The human ether-a-go-go related (hERG) potassium channel has unusual functional characteristics in that the rates of channel activation and deactivation are much slower than inactivation, which is attributed to specific structural elements within the NH2 terminus and the S1-S4 voltage-sensing domains (VSD). Although the charged residues in the VSD have been extensively modified and mutated as a result, the role and importance of specific hydrophobic residues in the S4 has been much less explored in studies of hERG gating. We found that charged, but not neutral or hydrophobic, amino acid substitution of isoleucine 521 at the outer end of the S4 transmembrane domain resulted in channels activating at much more negative voltages associated with a marked hyperpolarization of the conductance-voltage (G-V) relationship. The contributions of different physicochemical properties to this effect were probed by chemical modification of channels substituted with cysteine at position I521. When positively charged reagents including tetramethyl-rhodamine-5-maleimide (TMRM), 1-(2-maleimidylethyl)-4-[5-(4-methoxyphenyl)oxazol-2-yl] pyridinium methane-sulfonate (PyMPO), [2-(trimethylammonium)ethyl] methanethiosulfonate chloride (MTSET), and 2-aminoethyl methanethiosulfonate hydrobromide (MTSEA) were bound to the cysteine, I521C channels activated at more negative membrane potentials. To examine the contributions to hERG gating of other residues at the outer end of S4 (520-528), we performed a cysteine scan combined with MTSET modification. Only L520C, along with I521C, shows a substantial hyperpolarizing shift of the G-V relationship upon MTSET modification. The data indicate that the neutral, hydrophobic residue I521 at the extracellular end of S4 is critical for stabilizing the closed conformation of the hERG channel relative to the open state and by comparison with Shaker supports the alignment of hERG I521 with Shaker L361.
Journal of Medicinal Chemistry | 2018
Thilo Focken; Sultan Chowdhury; Alla Yurevna Zenova; Michael Edward Grimwood; Christine Chabot; Tao Sheng; Ivan William Hemeon; Shannon Decker; Michael T. Wilson; Paul Robert Bichler; Qi Jia; Shaoyi Sun; Clint Young; Sophia Lin; Samuel J. Goodchild; Noah Gregory Shuart; Elaine Chang; Zhiwei Xie; Bowen Li; Kuldip Khakh; Girish Bankar; Matthew Waldbrook; Rainbow Kwan; Karen Nelkenbrecher; Parisa Karimi Tari; Navjot Chahal; Luis E. Sojo; C. Lee Robinette; Andrew D. White; Chien-An Chen
The sodium channel NaV1.7 has emerged as a promising target for the treatment of pain based on strong genetic validation of its role in nociception. In recent years, a number of aryl and acyl sulfonamides have been reported as potent inhibitors of NaV1.7, with high selectivity over the cardiac isoform NaV1.5. Herein, we report on the discovery of a novel series of N-([1,2,4]triazolo[4,3- a]pyridin-3-yl)methanesulfonamides as selective NaV1.7 inhibitors. Starting with the crystal structure of an acyl sulfonamide, we rationalized that cyclization to form a fused heterocycle would improve physicochemical properties, in particular lipophilicity. Our design strategy focused on optimization of potency for block of NaV1.7 and human metabolic stability. Lead compounds 10, 13 (GNE-131), and 25 showed excellent potency, good in vitro metabolic stability, and low in vivo clearance in mouse, rat, and dog. Compound 13 also displayed excellent efficacy in a transgenic mouse model of induced pain.