Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Samuel J. Howarth is active.

Publication


Featured researches published by Samuel J. Howarth.


Journal of Orthopaedic Research | 2012

Biomechanical properties of the transverse carpal ligament under biaxial strain

Michael W.R. Holmes; Samuel J. Howarth; Jack P. Callaghan; Peter J. Keir

The transverse carpal ligament (TCL) influences carpal stability and carpal tunnel mechanics, yet little is known about its mechanical properties. We investigated the tissue properties of TCLs extracted from eight cadaver arms and divided into six tissue samples from the distal radial, distal middle, distal ulnar, proximal radial, proximal middle, and proximal ulnar regions. The 5% and 15% strains were applied biaxially to each sample at rates of 0.1, 0.25, 0.5, and 1%/s. Ligament thickness ranged from 1.22 to 2.90 mm. Samples from the middle of the TCL were thicker proximally than distally (p < 0.013). Tissue location significantly affected elastic modulus (p < 0.001). Modulus was greatest in the proximal radial samples (mean 2.8 MPa), which were 64% and 44% greater than the distal radial and proximal ulnar samples, respectively. Samples from the middle had a modulus that was 20–39% greater in the proximal versus more distal samples. The TCL exhibited different properties within different locations and in particular greater moduli were found near the carpal bone attachments. These properties contribute to the understanding of carpal tunnel mechanics that is critical to understanding disorders of the wrist.


Journal of Biomechanics | 2012

Compressive force magnitude and intervertebral joint flexion/extension angle influence shear failure force magnitude in the porcine cervical spine

Samuel J. Howarth; Jack P. Callaghan

Despite the findings that peak anterior shear load is highly correlated with low-back pain reporting, very little research has been conducted to determine how vertebral shear injury potential is influenced. The current study quantified the combined effects of vertebral joint compression and flexion/extension postural deviation from neutral on ultimate shear failure. Ninety-six porcine cervical specimens (48C3-C4, 48C5-C6) were tested. Each specimen was randomly assigned to one of twelve combinations of compressive force (15%, 30%, 45%, or 60% of predicted compressive failure force) and flexion/extension postural deviation (extended, neutral, or flexed). Vertebral joint shear failure was induced by applying posterior shear displacement of the caudal vertebra at a constant rate of 0.15 mm/s. Throughout shear failure tests, vertebral joint kinematics were measured using an optoelectronic camera and a series of infrared light emitting diodes while shear force was measured from load cells rigidly interfaced in series with linear actuators that applied the shear displacement. Measurements of shear stiffness, ultimate force, displacement, and energy stored were made from the force-displacement data. Compressive force and postural deviation demonstrated main effects without a statistically significant interaction for any of the measurements. Shear failure force increased by 11.1% for each 15% increment in compressive force (p<0.05). Postural deviation from neutral impacted ultimate shear failure force by a 12.8% increase with extension (p<0.05) and a 13.2% decrease with flexion (p<0.05). Displacement at ultimate failure was not significantly altered by either compressive force or postural deviation. These results demonstrate that shear failure force may be governed by changes in facet articulation, either by postural deviation or by reducing vertebral joint height through compression that alter the moment arm length between the center of facet contact pressure and the pars interarticularis location. However, objective evidence of this alteration currently does not exist. Both compression and flexion/extension postural deviation should be equally considered while assessing shear injury potential.


Journal of Biomechanical Engineering-transactions of The Asme | 2013

Use of Kinetic and Kinematic Data to Evaluate Load Transfer as a Mechanism for Flexion Relaxation in the Lumbar Spine

Samuel J. Howarth; Paul Mastragostino

Flexion relaxation (FR) in the low back occurs when load is transferred from the spines extensor musculature to its passive structures. This study investigated the influence of added upper body mass on low back kinetics and kinematics at the FR onset. Sixteen participants (eight male, eight female) performed standing full forward spine flexion with 0%, 15%, and 30% of their estimated upper body mass added to their shoulders. Electromyographic data were obtained from the lumbar erector spinae. Ground reaction forces and kinematic data from the lower limbs, pelvis, and spine were recorded. Extensor reaction moments (determined using a bottom-up linked segment model) and flexion angles at the FR onset were documented along with the maximum spine flexion. The angle at the FR onset increased significantly with added mass (p < 0.05). Expressing the FR onset angle as a percent of the full range of trunk flexion motion for that condition negated any differences between the added mass conditions. These findings demonstrate that low back kinetics play a role in mediating FR in the lumbar spine.


Journal of Electromyography and Kinesiology | 2013

Does prolonged seated deskwork alter the lumbar flexion relaxation phenomenon

Samuel J. Howarth; Drazen Glisic; Joyce G.B. Lee; Tyson A.C. Beach

Sustained maximum lumbar spine flexion can increase the angle at which the low back flexion relaxation phenomenon (FRP) is observed. This adaptation has been hypothesized to have implications for the control of lumbar spine stability and increase the potential for low back injury. The objective of this study was to investigate if similar changes in the FRP would occur from sub-maximal spine flexion induced by an extended continuous duration of seated office deskwork. Twenty-three participants (12 male and 11 female) performed three bouts of full forward spine flexion interspersed with two 1-h periods of seated deskwork. Lumbar spine angular kinematics and electromyographic activity from the lumbar erector spinae were obtained throughout all trials. The angles at which myoelectric silence occurred (FRP onset) were documented. Lumbar flexion at FRP onset increased by 1.3±1.5° after 1-h of sitting (p<0.05) with no further increase after 2-h. However, when the angle at the FRP onset was normalized to the total range of flexion, there was no difference in the FRP onset. These results suggest that the seated posture may induce residual deformation in the viscoelastic passive tissues of the low back; this could increase the challenge of controlling spine motion and reduce the load-bearing capacity of the lumbar spine system during activities performed following extended bouts of sitting.


Journal of Electromyography and Kinesiology | 2013

Viscoelastic creep induced by repetitive spine flexion and its relationship to dynamic spine stability

Samuel J. Howarth; David C. Kingston; Stephen H.M. Brown; Ryan B. Graham

Repetitive trunk flexion elicits passive tissue creep, which has been hypothesized to compromise spine stability. The current investigation determined if increased spine flexion angle at the onset of flexion relaxation (FR) in the lumbar extensor musculature was associated with altered dynamic stability of spine kinematics. Twelve male participants performed 125 consecutive cycles of full forward trunk flexion. Spine kinematics and lumbar erector spinae (LES) electromyographic (EMG) activity were obtained throughout the repetitive trunk flexion trial. Dynamic stability was evaluated with maximum finite-time Lyapunov exponents over five sequential blocks of 25cycles. Spine flexion angle at FR onset, and peak LES EMG activity were determined at baseline and every 25th cycle. Spine flexion angle at FR increased on average by 1.7° after baseline with significant increases of 1.7° and 2.4° at the 50th and 100th cycles. Maximum finite-time Lyapunov exponents demonstrated a transient, non-statistically significant, increase between cycles 26 and 50 followed by a recovery to baseline over the remainder of the repetitive trunk flexion cycles. Recovery of dynamic stability may be the consequence of increased active spine stiffness demonstrated by the non-significant increase in peak LES EMG that occurred as the repetitive trunk flexion progressed.


Ergonomics | 2016

Working position influences the biomechanical demands on the lower back during dental hygiene.

Samuel J. Howarth; Diane Grondin; Nicholas J. La Delfa; Jocelyn Cox; Jim R. Potvin

Abstract This investigation monitored the biomechanical demands on the lower back during simulated dental hygiene work. A total of 19 female, registered dental hygienists performed 30 continuous minutes of manual scaling (plaque removal) of a manikin’s teeth while seated. We monitored the working location and orientation of the dental hygienists, with respect to the manikin, along with their spine kinematics, spine extensor muscle activities and seat pressure, throughout the 30 min. A clock representation was used to express the working location. The location significantly influenced the dental hygienists’ pelvic orientation with respect to the manikin, spine posture, erector muscle activity and pressure distribution. Findings from this study suggest that the prevalence of lower back pain amongst dental hygienists may be directly related to low-level tonic activity of the spine’s extensor musculature, and the combined flexed and axially rotated spine postures. Practitioner Summary: Low back pain (LBP) is prevalent in dental hygienists, yet occupational demand on the low back has not been investigated. Posture, muscle activity and seat pressure were monitored. Combined spine rotation and flexion, and tonic activity of the extensor musculature may be related to LBP in dental hygienists.


Journal of Electromyography and Kinesiology | 2017

Neck muscle fatigue differentially alters scapular and humeral kinematics during humeral elevation in subclinical neck pain participants versus healthy controls

Mahboobeh Zabihhosseinian; Michael W.R. Holmes; Samuel J. Howarth; Brad Ferguson; Bernadette Murphy

BACKGROUND Scapular orientation is highly dependent on axioscapular muscle function. This study examined the impact of neck muscle fatigue on scapular and humeral kinematics in participants with and without subclinical neck pain (SCNP) during humeral elevation. METHODS Ten SCNP and 10 control participants performed three unconstrained trials of dominant arm humeral elevation in the scapular plane to approximately 120 degrees before and after neck extensor muscle fatigue. Three-dimensional scapular and humeral kinematics were measured during the humeral elevation trials. RESULTS Humeral elevation plane angle showed a significant interaction between groups (SCNP vs controls) and trial (pre- vs post-fatigue) (p=0.001). Controls began the unconstrained humeral elevation task after fatigue in a more abducted position, (p=0.002). Significant baseline differences in scapular rotation existed between the two groups (Posterior/Anterior tilt, p=0.04; Internal/External Rotation, p=0.001). DISCUSSION SCNP contributed to altered scapular kinematics. Neck muscle fatigue influenced humeral kinematics in controls but not the SCNP group; suggesting that altered scapular motor control in the SCNP group resulted in an impaired adaption further to the neck muscle fatigue.


Clinical Biomechanics | 2014

Quantifying strain in the vertebral artery with simultaneous motion analysis of the head and neck: A preliminary investigation

Steven Piper; Samuel J. Howarth; John J. Triano; Walter Herzog

BACKGROUND Spontaneous vertebral artery dissection has significant mortality and morbidity among young adults. Unfortunately, causal mechanisms remain unclear. The purpose of this study was to quantify mechanical strain in the vertebral artery while simultaneously capturing motion analysis data during passive movements of the head and neck relative to the trunk during spinal manipulation and cardinal planes of motion. METHODS Eight piezoelectric crystals (four per vertebral artery) were sutured into the lumen of the left and right vertebral arteries of 3 cadaveric specimens. Strain was then calculated as changes in length between neighboring crystals from a neutral head/neck reference position using ultrasound pulses. Simultaneously, passive motion of the head and neck on the trunk was captured using eight infrared cameras. The instantaneous strain arising in the vertebral artery was correlated with the relative changes in head position. FINDINGS Strain in the contralateral vertebral artery during passive flexion-rotation compared to that of extension-rotation is variable ([df=32]: -0.61<r<0.55). Peak strain does not coincide with peak angular displacement during spinal manipulation and cardinal planes of motion. Axial rotation displayed the greatest amount of strain. The greatest amount of strain achieved during spinal manipulation was comparably lower than strains achieved during passive end range motions and previously reported failure limits. INTERPRETATION The results of this study suggest that vertebral artery strains during head movements including spinal manipulation, do not exceed published failure strains. This study provides new evidence that peak strain in the vertebral artery may not occur at the end range of motion, but rather at some intermediate point during the head and neck motion.


Medical Engineering & Physics | 2013

Postural influence on the neutral zone of the porcine cervical spine under anterior-posterior shear load

Samuel J. Howarth; Kaitlin M. Gallagher; Jack P. Callaghan

Segmental instability, characterized by excessive or aberrant movement of the vertebrae can be assessed quantitatively using mechanical characteristics within a region of minimal resistance called the neutral zone. The diagnosis of instability is often used to decide whether or not to surgically fuse the vertebrae. Alterations in flexion/extension posture cause changes in both contact area and spacing between articulating facets that may lead to changes in the mechanical response of the functional spinal unit (FSU) within the neutral zone. This investigation quantified neutral zone (NZ) length under anterior and posterior shear loading and the influence of posture on the shear NZ characteristics of the vertebral joint. Thirty porcine cervical FSUs (15 C34 and 15 C56) were tested. Endplate area was calculated from measurements of the exposed endplates while facet angles were measured from X-rays taken in the transverse plane. Specimens were exposed to a 300 N compressive preload followed by a test to determine flexion/extension NZ limits. These limits were used as target angles during shear passive tests performed in extended and flexed postures. Displacement rate during shear passive tests was 0.2mm/s and five cycles of anterior-posterior shear were performed to a target of ±400 N in a randomized order of extended, neutral and flexed postures. Shear NZ length and average stiffness were quantified. Stiffness within the shear NZ was 67 N/mm in the neutral posture. Extended postures produced a 37% (p<0.0001) increase in shear stiffness within the NZ compared to both flexed and neutral postures. Posture did not influence shear NZ length. Therefore, a true region of zero stiffness does not exist during shear loading with a baseline compressive load. Neutral zone length for the porcine FSU exposed to shear load was not influenced, despite known changes in facet articulation, by changing posture. Average stiffness increased likely as a result of increased contact area and force in extension. The results from this investigation demonstrate that postural deviation of the vertebral joint is not likely a significant confounding factor when assessing segmental stability.


Clinical Biomechanics | 2013

Towards establishing an occupational threshold for cumulative shear force in the vertebral joint - an in vitro evaluation of a risk factor for spondylolytic fractures using porcine specimens.

Samuel J. Howarth; Jack P. Callaghan

BACKGROUND Injury models for spondylolytic fracture of the pars interarticularis have long considered repetitive shear loading as a risk factor without quantifying the relationship between shear force magnitude and fatigue life. This investigation sought to quantify the relationship using a basic in vitro approach. METHODS Thirty-two (16 C3-C4, 16 C5-C6) porcine cervical specimens were exposed to repetitive shear loading to 20%, 40%, 60%, or 80% of their calculated ultimate anterior shear failure tolerance. Shear force was cyclically applied at 1Hz for 21,600cycles or until bone failure was detected. Cumulative shear force and the number of cycles sustained until failure were calculated. Failure patterns were also documented. FINDINGS Cumulative shear and the number of cycles sustained prior to failure demonstrated a strong non-linearly decreasing relationship with increased force magnitude. In particular, sustained cumulative shear by the 40% group was 2.52 and 2.63MN∗s higher than for the 60% and 80% groups (P<0.0001). Despite undergoing an average of 230 more loading cycles, cumulative shear force sustained by the 60% group was not statistically different from the 80% group. Bilateral fractures of the cranial vertebras pars interarticularis were most common, but less consistent at higher force magnitudes. INTERPRETATION Our investigation suggested that pars interarticularis damage may begin non-linearly accumulating with shear forces between 20% and 40% of failure tolerance (approximately 430 to 860N). Models of pars interarticularis injury and estimates of cumulative shear exposure may be enhanced from a tissue-based weighting method for low-back shear.

Collaboration


Dive into the Samuel J. Howarth's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

John J. Triano

Canadian Memorial Chiropractic College

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Diane Grondin

Canadian Memorial Chiropractic College

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jocelyn Cox

Canadian Memorial Chiropractic College

View shared research outputs
Top Co-Authors

Avatar

Kevin D’Angelo

Canadian Memorial Chiropractic College

View shared research outputs
Top Co-Authors

Avatar

Michael W.R. Holmes

University of Ontario Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge