Samuel Kaplan
University of Texas Health Science Center at Houston
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Samuel Kaplan.
The EMBO Journal | 2000
Jeong-Il Oh; Samuel Kaplan
Here we show that the extent of electron flow through the cbb3 oxidase of Rhodobacter sphaeroides is inversely related to the expression levels of those photosynthesis genes that are under control of the PrrBA two‐component activation system: the greater the electron flow, the stronger the inhibitory signal generated by the cbb3 oxidase to repress photosynthesis gene expression. Using site‐directed mutagenesis, we show that intramolecular electron transfer within the cbb3 oxidase is involved in signal generation and transduction and this signal does not directly involve the intervention of molecular oxygen. In addition to the cbb3 oxidase, the redox state of the quinone pool controls the transcription rate of the puc operon via the AppA–PpsR antirepressor–repressor system. Together, these interacting regulatory circuits are depicted in a model that permits us to understand the regulation by oxygen and light of photosynthesis gene expression in R.sphaeroides.
Photosynthesis Research | 2001
Chris Mackenzie; Madhusudan Choudhary; Frank W. Larimer; Paul Predki; Stephanie Stilwagen; Judith P. Armitage; Robert D. Barber; Timothy J. Donohue; Jonathan P. Hosler; Jack E. Newman; James P. Shapleigh; R. Elizabeth Sockett; Jill H. Zeilstra-Ryalls; Samuel Kaplan
Rhodobacter sphaeroides 2.4.1 is an α-3 purple nonsulfur eubacterium with an extensive metabolic repertoire. Under anaerobic conditions, it is able to grow by photosynthesis, respiration and fermentation. Photosynthesis may be photoheterotrophic using organic compounds as both a carbon and a reducing source, or photoautotrophic using carbon dioxide as the sole carbon source and hydrogen as the source of reducing power. In addition, R. sphaeroides can grow both chemoheterotrophically and chemoautotrophically. The structural components of this metabolically diverse organism and their modes of integrated regulation are encoded by a genome of ∼4.5 Mb in size. The genome comprises two chromosomes CI and CII (2.9 and 0.9 Mb, respectively) and five other replicons. Sequencing of the genome has been carried out by two groups, the Joint Genome Institute, which carried out shotgun-sequencing of the entire genome and The University of Texas-Houston Medical School, which carried out a targeted sequencing strategy of CII. Here we describe our current understanding of the genome when data from both of these groups are combined. Previous work had suggested that the two chromosomes are equal partners sharing responsibilities for fundamental cellular processes. This view has been reinforced by our preliminary analysis of the virtually completed genome sequence. We also have some evidence to suggest that two of the plasmids, pRS241a and pRS241b encode chromosomal type functions and their role may be more than that of accessory elements, perhaps representing replicons in a transition state.
Journal of Biological Chemistry | 1995
Alexei A. Yeliseev; Samuel Kaplan
The Rhodobacter sphaeroides 2.4.1 tryptophan-rich sensory protein gene, tspO (formerly crtK, ORF160) encodes a 17-kDa protein which has an unusually high content of aromatic amino acids in general and of L-tryptophan in particular. The TspO protein was localized to the outer membrane of aerobically grown R. sphaeroides 2.4.1 by use of a polyclonal antibody against the purified protein. This protein is present in severalfold higher levels in photosynthetic as opposed to aerobic grown cells. Although tspO lies within the crt gene cluster, null mutations have an intact carotenoid biosynthetic pathway. In the TSPO1 mutant there was an increased production of carotenoids and bacteriochlorophyll relative to the wild type, particularly when cells were grown aerobically or semiaerobically. When present in trans the tspO gene restored “normal” pigment production to TSPO1. The effect of the tspO gene on pigment production was shown to take place at the level of gene expression. Because the tspO gene product of R. sphaeroides 2.4.1 shows significant sequence homology and similarity to the peripheral-type benzodoazepine receptor from mammalian sources, TspO-specific antibodies when probed against liver and kidney mitochondrial protein showed strong cross-reactivity. The role of TspO in R. sphaeroides 2.4.1 and its relation to photosynthesis gene expression are discussed.
Molecular Microbiology | 2001
Jeong-Il Oh; Samuel Kaplan
The volume of electron flow through the cbb3 branch of the electron transport chain and the redox state of the quinone pool generate signals that regulate photosynthesis gene expression in Rhodobacter sphaeroides. An inhibitory signal is generated at the level of the catalytic subunit of the cbb3 cytochrome c oxidase and is transduced through the membrane‐localized PrrC polypeptide to the PrrBA two‐component activation system, which controls the expression of most of the photosynthesis genes in response to O2. The redox state of the quinone pool is monitored by the redox‐active AppA antirepressor protein, which determines the functional state of the PpsR repressor protein. The antirepressor/repressor system as well as a modulator of AppA function, TspO, together with FnrL and PrrA stringently control photopigment gene expression. These regulatory elements, together with spectral complex‐specific assembly factors, control the ultimate cellular levels and composition of the photosynthetic membrane.
Methods in Enzymology | 1991
Timothy J. Donohue; Samuel Kaplan
Publisher Summary This chapter discusses genetic techniques used when working with photosynthetic bacteria, focusing on Rhodospirillaceae . Many photosynthetic bacteria are gram-negative and amenable, in varying degrees, to techniques for genetic analysis used in Escherichia coli and Salmonella typhimurium . Rhodospirillaceae are within the α and β subdivisions of the purple bacteria. They are either obligately or facultatively photosynthetic; the latter have a wide spectrum of growth modes. Rhodobacter species and Rhodospirillum rubrum grow well under both aerobic and anaerobic conditions. These organisms are capable of virtually all known biological energy transformations under anaerobic conditions. These organisms are capable of virtually all known biological energy transformations under anaerobic conditions. Hence, Rhodospirillaceae offer an important tool for genetic engineering.
Journal of Bacteriology | 2004
Christopher T. Pappas; Jakub P. Sram; Oleg V. Moskvin; Pavel S. Ivanov; R. Christopher Mackenzie; Madhusudan Choudhary; Miriam Land; Frank W. Larimer; Samuel Kaplan; Mark Gomelsky
A high-density oligonucleotide DNA microarray, a genechip, representing the 4.6-Mb genome of the facultative phototrophic proteobacterium, Rhodobacter sphaeroides 2.4.1, was custom-designed and manufactured by Affymetrix, Santa Clara, Calif. The genechip contains probe sets for 4,292 open reading frames (ORFs), 47 rRNA and tRNA genes, and 394 intergenic regions. The probe set sequences were derived from the genome annotation generated by Oak Ridge National Laboratory after extensive revision, which was based primarily upon codon usage characteristic of this GC-rich bacterium. As a result of the revision, numerous missing ORFs were uncovered, nonexistent ORFs were deleted, and misidentified start codons were corrected. To evaluate R. sphaeroides transcriptome flexibility, expression profiles for three diverse growth modes--aerobic respiration, anaerobic respiration in the dark, and anaerobic photosynthesis--were generated. Expression levels of one-fifth to one-third of the R. sphaeroides ORFs were significantly different in cells under any two growth modes. Pathways involved in energy generation and redox balance maintenance under three growth modes were reconstructed. Expression patterns of genes involved in these pathways mirrored known functional changes, suggesting that massive changes in gene expression are the major means used by R. sphaeroides in adaptation to diverse conditions. Differential expression was observed for genes encoding putative new participants in these pathways (additional photosystem genes, duplicate NADH dehydrogenase, ATP synthases), whose functionality has yet to be investigated. The DNA microarray data correlated well with data derived from quantitative reverse transcription-PCR, as well as with data from the literature, thus validating the R. sphaeroides genechip as a powerful and reliable tool for studying unprecedented metabolic versatility of this bacterium.
Journal of Biological Chemistry | 2004
Jung Hyeob Roh; William E. Smith; Samuel Kaplan
The roles of oxygen and light on the regulation of photosynthesis gene expression in Rhodobacter sphaeroides 2.4.1 have been well studied over the past 50 years. More recently, the effects of oxygen and light on gene regulation have been shown to involve the interacting redox chains present in R. sphaeroides under diverse growth conditions, and many of the redox carriers comprising these chains have been well studied. However, the expression patterns of those genes encoding these redox carriers, under aerobic and anaerobic photosynthetic growth, have been less well studied. Here, we provide a transcriptional analysis of many of the genes comprising the photosynthesis lifestyle, including genes corresponding to many of the known regulatory elements controlling the response of this organism to oxygen and light. The observed patterns of gene expression are evaluated and discussed in light of our knowledge of the physiology of R. sphaeroides under aerobic and photosynthetic growth conditions. Finally, this analysis has enabled to us go beyond the traditional patterns of gene expression associated with the photosynthesis lifestyle and to consider, for the first time, the full complement of genes responding to oxygen, and variations in light intensity when growing photosynthetically. The data provided here should be considered as a first step in enabling one to model electron flow in R. sphaeroides 2.4.1.
Journal of Biological Chemistry | 1999
Alexei A. Yeliseev; Samuel Kaplan
A bacterial homolog of the mammalian mitochondrial benzodiazepine receptor, the tryptophan-rich sensory protein (TspO) has been previously demonstrated to negatively affect the transcriptional expression of several photosynthesis genes ofRhodobacter sphaeroides. To identify components of the signal transduction pathway from the outer membrane-localized TspO to the DNA-active transcription factor(s), we examined the involvement of TspO in the regulation of tetrapyrrole metabolism in R. sphaeroides. By analyzing the tetrapyrrole pigments accumulated by resting cell suspensions of R. sphaeroides, we demonstrated that TspO negatively regulates the activity of coproporphyrinogen III oxidase in this bacterium. hemN, encoding one of the isoenzymes of coproporphyrinogen III oxidase ofR. sphaeroides, provided in trans to the wild type strain, produced a TSPO1 mutant phenotype by abolishing the negative effect of TspO on the transcription of the photosynthesis genes, crtI and puc. It is proposed that TspO, by regulating the exit of certain tetrapyrrole intermediates of the heme/bacteriochlorophyll biosynthetic pathways in R. sphaeroides in response to the availability of molecular oxygen, causes the accumulation of a biosynthetic intermediate that serves as a corepressor for both specific pigment gene transcription and thepuc operon. The relationship between the bacterial TspO and the mitochondrial peripheral benzodiazepine receptor is discussed.
Journal of Bacteriology | 2007
Madhusudan Choudhary; Xie Zanhua; Y. X. Fu; Samuel Kaplan
Three strains of Rhodobacter sphaeroides of diverse origin have been under investigation in our laboratory for their genome complexities, including the presence of multiple chromosomes and the distribution of essential genes within their genomes. The genome of R. sphaeroides 2.4.1 has been completely sequenced and fully annotated, and now two additional strains (ATCC 17019 and ATCC 17025) of R. sphaeroides have been sequenced. Thus, genome comparisons have become a useful approach in determining the evolutionary relationships among different strains of R. sphaeroides. In this study, the concatenated chromosomal sequences from the three strains of R. sphaeroides were aligned, using Mauve, to examine the extent of shared DNA regions and the degree of relatedness among their chromosome-specific DNA sequences. In addition, the exact intra- and interchromosomal DNA duplications were analyzed using Mummer. Genome analyses employing these two independent approaches revealed that strain ATCC 17025 diverged considerably from the other two strains, 2.4.1 and ATCC 17029, and that the two latter strains are more closely related to one another. Results further demonstrated that chromosome II (CII)-specific DNA sequences of R. sphaeroides have rapidly evolved, while CI-specific DNA sequences have remained highly conserved. Aside from the size variation of CII of R. sphaeroides, variation in sequence lengths of the CII-shared DNA regions and their high sequence divergence among strains of R. sphaeroides suggest the involvement of CII in the evolution of strain-specific genomic rearrangements, perhaps requiring strains to adapt in specialized niches.
Journal of Biological Chemistry | 2007
Oleg V. Moskvin; Samuel Kaplan; Marie Alda Gilles-Gonzalez; Mark Gomelsky
To monitor fluctuations in oxygen concentration, cells use sensory proteins often containing heme cofactors. Here, we identify a new class of heme-binding oxygen sensors, reveal their unusual phylogenetic origin, and propose a sensing mode of a member of this class. We show that heme is bound noncovalently to the central region of AppA, an oxygen and light sensor from Rhodobacter sphaeroides. The addition of oxygen to ferrous AppA discoordinated the heme, and subsequent oxygen removal fully restored the heme coordination. In vitro, the extent of heme discoordination increased gradually with the rise in oxygen levels over a broad concentration range. This response correlated well with the gradual decrease in transcription of photosynthesis genes regulated by AppA and its partner repressor PpsR. We conclude that the AppA-PpsR regulatory system functions as an oxygen-dependent transcriptional rheostat. We identified a new domain embedded in the central region of AppA and designated it SCHIC for sensor containing heme instead of cobalamin. A phylogenetic analysis revealed that SCHIC domain proteins form a distinct cluster within a superfamily that includes vitamin B12-binding proteins and other proteins that may bind other kinds of tetrapyrroles.