Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Samuel Leman is active.

Publication


Featured researches published by Samuel Leman.


Neuroscience & Biobehavioral Reviews | 2005

Early life genetic, epigenetic and environmental factors shaping emotionality in rodents

Andrew Holmes; Anne Marie Le Guisquet; Elise Vogel; Rachel A. Millstein; Samuel Leman; Catherine Belzung

Childhood trauma is known to increase risk for emotional disorders and addiction. However, little is currently understood about the neurodevelopmental basis of these effects, or how genetic and epigenetic factors interact with the environment to shape the systems subserving emotionality. In this review, we discuss the use of rodent models of early life emotional experience to study these issues in the laboratory and present some of our pertinent findings. In rats, postnatal maternal separation can produce lasting increases in emotional behavior and stressor-reactivity, together with alterations in various brain neurotransmitter systems implicated in emotionality, including corticotropin-releasing factor, serotonin, norepinephrine, and glutamate. Genetic differences between inbred mouse strains have been exploited to further study how maternal behavior affects emotional development using techniques such as cross-fostering and generation of inter-strain hybrids. Together with our own recent data, the findings of these studies demonstrate the pervasive influence of maternal and social environments during sensitive developmental periods and reveal how genetic factors determine how these early life experiences can shape brain and behavior throughout life.


Neuropsychopharmacology | 2009

Corticolimbic transcriptome changes are state-dependent and region-specific in a rodent model of depression and of antidepressant reversal.

Alexandre Surget; Yingjie Wang; Samuel Leman; Yadira Ibarguen-Vargas; Nicole Edgar; Guy Griebel; Catherine Belzung; Etienne Sibille

Gene microarrays may enable the elucidation of neurobiological changes underlying the pathophysiology and treatment of major depression. However, previous studies of antidepressant treatments were performed in healthy normal rather than ‘depressed’ animals. Since antidepressants are devoid of mood-changing effects in normal individuals, the clinically relevant rodent transcriptional changes could remain undetected. We investigated antidepressant-related transcriptome changes in a corticolimbic network of mood regulation in the context of the unpredictable chronic mild stress (UCMS), a naturalistic model of depression based on socio-environmental stressors. Mice subjected to a 7-week UCMS displayed a progressive coat state deterioration, reduced weight gain, and increased agonistic and emotion-related behaviors. Chronic administration of an effective (fluoxetine) or putative antidepressant (corticotropin-releasing factor-1 (CRF1) antagonist, SSR125543) reversed all physical and behavioral effects. Changes in gene expression differed among cingulate cortex (CC), amygdala (AMY) and dentate gyrus (DG) and were extensively reversed by both drugs in CC and AMY, and to a lesser extent in DG. Fluoxetine and SSR125543 also induced additional and very similar molecular profiles in UCMS-treated mice, but the effects of the same drug differed considerably between control and UCMS states. These studies established on a large-scale that the molecular impacts of antidepressants are region-specific and state-dependent, revealed common transcriptional changes downstream from different antidepressant treatments and supported CRF1 targeting as an effective therapeutic strategy. Correlations between UCMS, drug treatments, and gene expression suggest distinct AMY neuronal and oligodendrocyte molecular phenotypes as candidate systems for mood regulation and therapeutic interventions.


Neuropsychopharmacology | 2012

Neurogenesis-independent antidepressant-like effects on behavior and stress axis response of a dual orexin receptor antagonist in a rodent model of depression.

Mathieu Nollet; Philippe Gaillard; Arnaud Tanti; Virginie Girault; Catherine Belzung; Samuel Leman

Growing evidence indicates that an increase of orexin (or hypocretin) signaling is involved in the pathophysiology of major depression, but little is known regarding the causal link between the orexinergic system and depressive-like states. Here we blocked orexin receptors in mice subjected to unpredictable chronic mild stress (UCMS) to investigate putative antidepressant-like effects of this treatment, as well as the underlying mechanisms. BALB/c mice were exposed to 9 weeks of UCMS and from the third week onward treated daily with fluoxetine (20 mg/kg per day, per os) or with the dual orexin receptor antagonist almorexant (100 mg/kg per day, per os). The effects of UCMS regimen and pharmacological treatments were assessed by physical measures and behavioral testing. The dexamethasone suppression test was performed to examine the integrity of the negative feedback of the hypothalamic-pituitary-adrenal (HPA) axis, and immunohistochemical markers were used to assess cell proliferation (Ki-67), immature newborn neurons (doublecortin), and mature newborn neurons (5-bromo-2′-deoxyuridine/NeuN) in the dorsal and ventral parts of the hippocampus. Our results show that 7 weeks of fluoxetine or almorexant treatments counteract the UCMS-induced physical and behavioral alterations. Both treatments prevented the HPA axis dysregulation caused by UCMS, but only fluoxetine reversed the UCMS-induced decrease of hippocampal cell proliferation and neurogenesis, while chronic almorexant treatment decreased cell proliferation and neurogenesis specifically in the ventral hippocampus. Taken together, this is the first evidence that pharmacological blockade of the orexinergic system induces a robust antidepressant-like effect and the restoration of stress-related HPA axis defect independently from a neurogenic action.


Neuropharmacology | 2011

Activation of orexin neurons in dorsomedial/perifornical hypothalamus and antidepressant reversal in a rodent model of depression.

Mathieu Nollet; Philippe Gaillard; Frédéric Minier; Arnaud Tanti; Catherine Belzung; Samuel Leman

Chronic stressful life events are risk factors for depression often accompanied by homeostatic disturbances. Hypothalamic neuropeptides, such as orexins (OXs) and melanin-concentrating hormone (MCH), are involved in regulation of several autonomic functions that are altered in depression. However, little is known about the link between orexinergic or MCH-ergic systems and depression. Using double immunohistochemical labeling for OX- or MCH-containing neurons and Fos protein, we studied the effects of a chronic selective serotonin reuptake inhibitor antidepressant treatment (fluoxetine) on the OX and MCH neuronal activation in mice exposed to unpredictable chronic mild stress (UCMS), a rodent model of depression. Western blot was also performed to assess OX and MCH receptor expression in various brain areas. Finally, almorexant, a dual OX receptor antagonist, was assessed in the tail suspension test. UCMS induced physical and behavioral disturbances in mice reversed by 6-week fluoxetine treatment. Orexinergic neurons were more activated in the dorsomedial and perifornical hypothalamic area (DMH-PFA) of UCMS-subjected mice compared to the lateral hypothalamus (LH), and this increase was reversed by 6-week fluoxetine treatment. UCMS also reduced expression of OX-receptor 2 in the thalamus and hypothalamus, but not in animals chronically treated with fluoxetine. MCH neurons were neither affected by UCMS nor by antidepressant treatment, while UCMS modulated MCH receptor 1 expression in thalamus and hippocampus. Finally, chronic but not acute administration of almorexant, induced antidepressant-like effect in the tail suspension test. These data suggest that OX neurons in the DMH-PFA and MCH-ergic system may contribute to the pathophysiology of depressive disorders.


Frontiers in Pharmacology | 2013

Mechanisms of antidepressant resistance

Wissam El-Hage; Samuel Leman; Vincent Camus; Catherine Belzung

Depression is one of the most frequent and severe mental disorder. Since the discovery of antidepressant (AD) properties of the imipramine and then after of other tricyclic compounds, several classes of psychotropic drugs have shown be effective in treating major depressive disorder (MDD). However, there is a wide range of variability in response to ADs that might lead to non response or partial response or in increased rate of relapse or recurrence. The mechanisms of response to AD therapy are poorly understood, and few biomarkers are available than can predict response to pharmacotherapy. Here, we will first review markers that can be used to predict response to pharmacotherapy, such as markers of drug metabolism or blood-brain barrier (BBB) function, the activity of specific brain areas or neurotransmitter systems, hormonal dysregulations or plasticity, and related molecular targets. We will describe both clinical and preclinical studies and describe factors that might affect the expression of these markers, including environmental or genetic factors and comorbidities. This information will permit us to suggest practical recommendations and innovative treatment strategies to improve therapeutic outcomes.


CNS Drugs | 2013

Role of Orexin in the Pathophysiology of Depression: Potential for Pharmacological Intervention

Mathieu Nollet; Samuel Leman

Depression is a devastating mental disorder with an increasing impact throughout the world, whereas the efficacy of currently available pharmacological treatment is still limited. Growing evidence from preclinical and clinical studies suggests that orexins (neuropeptides that are also known as hypocretins) and their receptors are involved in the physiopathology of depression. Indeed, the orexinergic system regulates functions that are disturbed in depressive states such as sleep, reward system, feeding behavior, the stress response and monoaminergic neurotransmission. Nevertheless, the precise role of orexins in behavioral and neurophysiological impairments observed in depression is still unclear. Both hypoactivity and hyperactivity of orexin signaling pathways have been found to be associated with depression. These discrepancies in the literature prompted the necessity for additional investigations, as the orexinergic system appears to be a promising target to treat the symptoms of depression. This assumption is underlined by recent data suggesting that pharmacological blockade of orexin receptors induces a robust antidepressant-like effect in an animal model of depression. Further preclinical and clinical studies are needed to progress the overall understanding of the orexinergic alterations in depression, which will eventually translate preliminary observations into real therapeutic potential. The aim of this paper is to provide an overview of human and animal research dedicated to the study of the specific involvement of orexins in depression, and to propose a framework in which disturbances of the orexinergic system are regarded as an integral component of the etiology of depression.


Neurobiology of Disease | 2015

Chronic mild stress and antidepressant treatment alter 5-HT1A receptor expression by modifying DNA methylation of a conserved Sp4 site.

Brice Le François; Jeremy Soo; Anne Millar; Mireille Daigle; Anne-Marie Le Guisquet; Samuel Leman; Frédéric Minier; Catherine Belzung; Paul R. Albert

The serotonin 1A receptor (5-HT1A), a critical regulator of the brain serotonergic tone, is implicated in major depressive disorder (MDD) where it is often found to be dys-regulated. However, the extent to which stress and antidepressant treatment impact 5-HT1A expression in adults remains unclear. To address this issue, we subjected adult male BALB/c mice to unpredictable chronic mild stress (UCMS) to induce a depression-like phenotype that was reversed by chronic treatment with the antidepressant imipramine. In prefrontal cortex (PFC) and midbrain tissue, UCMS increased 5-HT1A RNA and protein levels, changes that are expected to decrease the brain serotonergic activity. The stress-induced increase in 5-HT1A expression was paralleled by a specific increase in DNA methylation of the conserved -681 CpG promoter site, located within a Sp1-like element. We show that the -681 CpG site is recognized and repressed by Sp4, the predominant neuronal Sp1-like factor and that Sp4-induced repression is attenuated by DNA methylation, despite a stress-induced increase in PFC Sp4 levels. These results indicate that adult life stress induces DNA methylation of a conserved promoter site, antagonizing Sp4 repression to increase 5-HT1A expression. Chronic imipramine treatment fully reversed the UCMS-induced increase in methylation of the -681 CpG site in the PFC but not midbrain of stressed animals and also increased 5-HT1A expression in the PFC of control animals. Incomplete reversal by imipramine of stress-induced changes in 5-HT1A methylation and expression indicates a persistence of stress vulnerability, and that sustained reversal of behavioral impairments may require additional pathways.


Physiology & Behavior | 2008

Changes in Heart Rate Variability during a tonic immobility test in quail

D. Valance; Gérard Després; S. Richard; Paul Constantin; Sandrine Mignon-Grasteau; Samuel Leman; Alain Boissy; Jean-Michel Faure; Christine Leterrier

Tonic immobility (TI) is an unlearned fear response induced by a brief physical restraint and characterized by a marked autonomic nervous system involvement. This experiment aimed at studying the relative involvement of both autonomic sub-systems, the sympathetic and parasympathetic nervous systems, during TI, by analyzing Heart Rate Variability. Quail selected genetically for long (LTI) or short (STI) TI duration and quail from a control line (CTI) were used. The animals were surgically fitted with a telemetric device to record electrocardiograms before and during a TI test. Heart rate did not differ between lines at rest. The induction of TI, whether effective or not, induced an increase in HR characterized by a shift of the sympathovagal balance towards a higher sympathetic dominance. Parasympathetic activity was lower during effective than during non-effective inductions in CTI quail. During TI, the increase in sympathetic dominance was initially maintained and then declined, while relative parasympathetic activity remained low, especially in CTI and STI lines. The end of tonic immobility was characterized by a rise in overall autonomic activity in all lines and an increase in parasympathetic influence in CTI and STI quail. To conclude, the susceptibility to TI cannot be explained only by autonomic reflex changes. It is probably strongly related to the perception of the test by the quail. During TI, the differences between lines in autonomic responses probably reflect behavioural differences in the fear response.


Neurotherapeutics | 2016

Combined Metabolomics and Transcriptomics Approaches to Assess the IL-6 Blockade as a Therapeutic of ALS: Deleterious Alteration of Lipid Metabolism

Franck Patin; Thomas Baranek; Patrick Vourc’h; Lydie Nadal-Desbarats; Jean-François Goossens; Sylviane Marouillat; Anne-Frédérique Dessein; Amandine Descat; Blandine Madji Hounoum; Clément Bruno; Hervé Watier; Mustafa Si-Tahar; Samuel Leman; Jean-Claude Lecron; Christian R. Andres; Philippe Corcia; Hélène Blasco

In amyotrophic lateral sclerosis (ALS), motor neuron degeneration occurs simultaneously with systemic metabolic impairment and neuroinflammation. Playing an important role in the regulation of both phenomena, interleukin (IL)-6, a major cytokine of the inflammatory response has been proposed as a target for management of ALS. Although a pilot clinical trial provided promising results in humans, another recent preclinical study showed that knocking out the IL-6 gene in mice carrying ALS did not improve clinical outcome. In this study, we aimed to determine the relevance of the IL-6 pathway blockade in a mouse model of ALS by using a pharmacological antagonist of IL-6, a murine surrogate of tocilizumab, namely MR16-1. We analyzed the immunological and metabolic effects of IL-6 blockade by cytokine measurement, blood cell immunophenotyping, targeted metabolomics, and transcriptomics. A deleterious clinical effect of MR16-1 was revealed, with a speeding up of weight loss (p = 0.0041) and decreasing body weight (p < 0.05). A significant increase in regulatory T-cell count (p = 0.0268) and a decrease in C-X-C ligand-1 concentrations in plasma (p = 0.0479) were observed. Metabolomic and transcriptomic analyses revealed that MR16-1 mainly affected branched-chain amino acid, lipid, arginine, and proline metabolism. IL-6 blockade negatively affected body weight, despite a moderated anti-inflammatory effect. Metabolic effects of IL-6 were mild compared with metabolic disturbances observed in ALS, but a modification of lipid metabolism by therapy was identified. These results indicate that IL-6 blockade did not improve clinical outcome of a mutant superoxide dismutase 1 mouse model of ALS.


Journal of Neuroinflammation | 2013

MyD88 is crucial for the development of a protective CNS immune response to Toxoplasma gondii infection

Marbel Torres; Rachel Guiton; Sonia Lacroix-Lamandé; Bernhard Ryffel; Samuel Leman; Isabelle Dimier-Poisson

BackgroundToxoplasmosis is one of the most common parasitic infections in humans. It can establish chronic infection and is characterized by the formation of tissue cysts in the brain. The cysts remain largely quiescent for the life of the host, but can reactivate and cause life-threatening toxoplasmic encephalitis in immunocompromised patients, such as those with AIDS, neoplastic diseases and organ transplants. Toll-like receptor (TLR) adaptor MyD88 activation is required for the innate sensing of Toxoplasma gondii. Mice deficient in MyD88 have defective IL-12 and Th1 effector responses, and are highly susceptible to the acute phase of T. gondii infection. However, the role of this signaling pathway during cerebral infection is poorly understood and requires examination.MethodMyD88-deficient mice and control mice were orally infected with T. gondii cysts. Cellular and parasite infiltration in the peripheral organs and in the brain were determined by histology and immunohistochemistry. Cytokine levels were determined by ELISA and chemokine mRNA levels were quantified by real-time PCR (qPCR).ResultsThirteen days after infection, a higher parasite burden was observed but there was no histological change in the liver, heart, lungs and small intestine of MyD88−/− and MyD88+/+ mice. However, MyD88−/− mice compared to MyD88+/+ mice were highly susceptible to cerebral infection, displayed high parasite migration to the brain, severe neuropathological signs of encephalitis and succumbed within 2 weeks of oral infection. Susceptibility was primarily associated with lower expression of Th1 cytokines, especially IL-12, IFN-γ and TNF-α, significant decrease in the expression of CCL3, CCL5, CCL7 and CCL19 chemokines, marked defect of CD8+ T cells, and infiltration of CD11b+ and F4/80+ cells in the brain.ConclusionMyD88 is essential for the protection of mice during the cerebral installation of T. gondii infection. These results establish a role for MyD88 in T cell-mediated control of T. gondii in the central nervous system (CNS).

Collaboration


Dive into the Samuel Leman's collaboration.

Top Co-Authors

Avatar

Catherine Belzung

François Rabelais University

View shared research outputs
Top Co-Authors

Avatar

Alexandre Surget

François Rabelais University

View shared research outputs
Top Co-Authors

Avatar

Christian R. Andres

François Rabelais University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Patrick Vourc’h

François Rabelais University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Clément Bruno

François Rabelais University

View shared research outputs
Top Co-Authors

Avatar

Franck Patin

François Rabelais University

View shared research outputs
Researchain Logo
Decentralizing Knowledge