Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Samuel Mabbott is active.

Publication


Featured researches published by Samuel Mabbott.


Chemical Science | 2014

Simultaneous detection and quantification of three bacterial meningitis pathogens by SERS

Kirsten Gracie; Elon Correa; Samuel Mabbott; Jennifer A. Dougan; Duncan Graham; Royston Goodacre; Karen Faulds

Bacterial meningitis is well known for its rapid onset and high mortality rates, therefore rapid detection of bacteria found in cerebral spinal fluid (CSF) and subsequent effective treatment is crucial. A new quantitative assay for detection of three pathogens that result in bacterial meningitis using a combination of lambda exonuclease (λ-exonuclease) and surface enhanced Raman scattering (SERS) is reported. SERS challenges current fluorescent-based detection methods in terms of both sensitivity and more importantly the detection of multiple components in a mixture, which is becoming increasingly more desirable for clinical diagnostics. λ-Exonuclease is a processive enzyme that digests one strand of double stranded DNA bearing a terminal 5′-phosphate group. The new assay format involves the simultaneous hybridisation of two complementary DNA probes (one containing a SERS active dye) to a target sequence followed by λ-exonuclease digestion of double stranded DNA and SERS detection of the digestion product. Three meningitis pathogens were successfully quantified in a multiplexed test with calculated limits of detection in the pico-molar range, eliminating the need for time consuming culture based methods that are currently used for analysis. Quantification of each individual pathogen in a mixture using SERS is complex, however, this is the first report that this is possible using the unique spectral features of the SERS signals combined with partial least squares (PLS) regression. This is a powerful demonstration of the ability of this SERS assay to be used for analysis of clinically relevant targets with significant advantages over existing approaches and offers the opportunity for future deployment in healthcare applications.


Analytical Chemistry | 2013

Optimization of Parameters for the Quantitative Surface-Enhanced Raman Scattering Detection of Mephedrone Using a Fractional Factorial Design and a Portable Raman Spectrometer.

Samuel Mabbott; Elon Correa; David P. Cowcher; J. William Allwood; Royston Goodacre

A new optimization strategy for the SERS detection of mephedrone using a portable Raman system has been developed. A fractional factorial design was employed, and the number of statistically significant experiments (288) was greatly reduced from the actual total number of experiments (1722), which minimized the workload while maintaining the statistical integrity of the results. A number of conditions were explored in relation to mephedrone SERS signal optimization including the type of nanoparticle, pH, and aggregating agents (salts). Through exercising this design, it was possible to derive the significance of each of the individual variables, and we discovered four optimized SERS protocols for which the reproducibility of the SERS signal and the limit of detection (LOD) of mephedrone were established. Using traditional nanoparticles with a combination of salts and pHs, it was shown that the relative standard deviations of mephedrone-specific Raman peaks were as low as 0.51%, and the LOD was estimated to be around 1.6 μg/mL (9.06 × 10(-6) M), a detection limit well beyond the scope of conventional Raman and extremely low for an analytical method optimized for quick and uncomplicated in-field use.


Analyst | 2013

2p or not 2p: tuppence-based SERS for the detection of illicit materials

Samuel Mabbott; Alex Eckmann; Cinzia Casiraghi; Royston Goodacre

Deposition of silver onto British 2p coins has been demonstrated as an efficient and cost effective approach to producing substrates capable of promoting surface enhanced Raman scattering (SERS). Silver application to the copper coins is undemanding taking just 20 s, and results in the formation of multiple hierarchial dendritic structures. To demonstrate that the silver deposition sites were capable of SERS the highly fluorescent Rhodamine 6G (R6G) probe was used. Analyses indicated that Raman enhancement only occurs at the silver deposition sites and not from the roughened copper surface. The robustness of the substrate in the identification and discrimination of illegal and legal drugs of abuse was then explored. Application of the drugs to the substrates was carried out using spotting and soaking methodologies. Whilst little or no SERS spectra of the drugs were generated upon spotting, soaking of the substrate in a methanolic solution of the drugs yielded a vast amount of spectral information. Excellent reproducibility of the SERS method and classification of three of the drugs, 4-methylmethcathinone (mephedrone), 5,6-methylenedioxy-2-aminoindane (MDAI) and 3,4-methylenedioxy-N-methylamphetamine (MDMA) were demonstrated using principal components analysis and partial least squares.


Analyst | 2012

The optimisation of facile substrates for surface enhanced Raman scattering through galvanic replacement of silver onto copper

Samuel Mabbott; Iain A. Larmour; Vladimir Vishnyakov; Yun Xu; Duncan Graham; Royston Goodacre

A fast and cost-effective approach for the synthesis of substrates used in surface enhanced Raman scattering (SERS) has been developed using galvanic displacement. Deposition of silver onto commercially available Cu foil has resulted in the formation of multiple hierarchical structures, whose morphology show dependence on deposition time and temperature. Analysis of the surface structure by scanning electron microscopy revealed that the more complex silver structures correlated well with increased deposition time and temperature. Using Rhodamine 6G (R6G) as a model Raman probe it was also possible to relate the substrate morphology directly with subsequent SERS intensity from the R6G analyte as well as the reproducibility across a total of 15 replicate Raman maps (20 × 20 pixels) consisting of 400 spectra at a R6G concentration of 10(-4) M. The substrate with the highest reproducibility was then used to explore the limit of detection and this compared very favourably with colloidal-based SERS assessments of the same analyte.


ACS Applied Materials & Interfaces | 2016

Thermoresponsive Polymer Micropatterns Fabricated by Dip-Pen Nanolithography for a Highly Controllable Substrate with Potential Cellular Applications

Stacey Laing; Raffaella Suriano; Dimitrios A. Lamprou; Carol-Anne Smith; Matthew J. Dalby; Samuel Mabbott; Karen Faulds; Duncan Graham

We report a novel approach for patterning thermoresponsive hydrogels based on N,N-diethylacrylamide (DEAAm) and bifunctional Jeffamine ED-600 by dip-pen nanolithography (DPN). The direct writing of micron-sized thermoresponsive polymer spots was achieved with efficient control over feature size. A Jeffamine-based ink prepared through the combination of organic polymers, such as DEAAm, in an inorganic silica network was used to print thermosensitive arrays on a thiol-silanized silicon oxide substrate. The use of a Jeffamine hydrogel, acting as a carrier matrix, allowed a reduction in the evaporation of ink molecules with high volatility, such as DEAAm, and facilitated the transfer of ink from tip to substrate. The thermoresponsive behavior of polymer arrays which swell/deswell in aqueous solution in response to a change in temperature was successfully characterized by atomic force microscopy (AFM) and Raman spectroscopy: a thermally induced change in height and hydration state was observed, respectively. Finally, we demonstrate that cells can adhere to and interact with these dynamic features and exhibit a change in behavior when cultured on the substrates above and below the transition temperature of the Jeffamine/DEAAm thermoresponsive hydrogels. This demonstrates the potential of these micropatterned hydrogels to act as a controllable surface for cell growth.


Analytical Methods | 2017

Objective assessment of SERS thin films: comparison of silver on copper via galvanic displacement with commercially available fabricated substrates

Samuel Mabbott; Yun Xu; Royston Goodacre

Many studies report the development of new thin films for surface enhanced Raman scattering (SERS). However, the assessment of these surfaces in terms of their reproducibility for SERS is often subjective and whilst many spectra could and indeed should be reported, very few repeat measurements are typically used. Here, the performance of three SERS thin film substrates is assessed objectively using both univariate and novel multivariate methods. The silver on copper substrate (SoC) was synthesised in-house via galvanic displacement, whilst the other two substrates Klarite and QSERS are commercially available. The reproducibility of these substrates was assessed using rhodamine 6G (R6G) as a probe analyte and seven common vibrational bands that were observed in all R6G spectra were evaluated. In order to be as objective as possible a total of seven different data analysis methods were used to evaluate the surfaces revealing that overall the SoC substrate demonstrates much greater reproducibility when compared to the commercial substrates. Finally, through the collection of large datasets containing 6400 spectra per single substrate we also provide guidelines as to the typical number of spectra that should be collected in order to assess a substrates performance objectively, and we conclude that this must be a minimum of 180 spectra collected randomly from across the region of interest.


Proceedings of SPIE | 2016

Comparison of Fe2O3 and Fe2CoO4 core-shell plasmonic nanoparticles for aptamer mediated SERS assays

Haley Marks; Samuel Mabbott; Po-Jung Huang; George W. Jackson; Jun Kameoka; Duncan Graham; Gerard L. Coté

Conjugation of oligonucleotides or aptamers and their corresponding analytes onto plasmonic nanoparticles mediates the formation of nanoparticle assemblies: molecularly bound bundles of nanoparticles which cause a measurable change in the colloid’s optical properties. Here, we present further optimization of a “SERS off” competitive binding assay utilizing plasmonic and magnetic nanoparticles for the detection of the toxin bisphenol A (BPA). The assay involves 1) a ‘target’ silver nanoparticle functionalized with a Raman reporter dye and PEGylated BPA-binding DNA aptamers, and 2) a version of the toxin BPA, bisphenol A diglycidyl ether (BADGE), PEGylated and immobilized onto a silver coated magnetic ’probe’ nanoparticle. When mixed, these target and probe nanoparticles cluster into magnetic dimers and trimers and an enhancement in their SERS spectra is observed. Upon introduction of free BPA in its native form, target AgNPs are competitively freed; reversing the nanoparticle assembly and causing the SERS signal to “turn-off” and decrease in response to the competitive binding event. The assay particles were housed inside two types of optofluidic chips containing magnetically active nickel pads, in either a straight or spotted pattern, and both Fe2O3 and Fe2CoO4 were compared as magnetic cores for the silver coated probe nanoparticle. We found that the Ag@ Fe2O3 particles were, on average, more uniform in size and more stable than Ag@ Fe2CoO4, while the addition of cobalt significantly improved the collection time of particles within the magnetic chips. Using 3D Raman mapping, we found that the straight channel design with the Ag@ Fe2O3 particles provided the most uniform nanoparticle organization, while the spotted channel design with Ag@ Fe2CoO4 demonstrated a larger SERS enhancement, and thus a lower limit of detection.


Proceedings of SPIE | 2015

SERS active colloidal nanoparticles for the detection of small blood biomarkers using aptamers

Haley Marks; Samuel Mabbott; George W. Jackson; Duncan Graham; Gerard L. Coté

Functionalized colloidal nanoparticles for SERS serve as a promising multifunctional assay component for blood biomarker detection. Proper design of these nanoprobes through conjugation to spectral tags, protective polymers, and sensing ligands can provide experimental control over the sensitivity, range, reproducibility, particle stability, and integration with biorecognition assays. Additionally, the optical properties and degree of electromagnetic SERS signal enhancement can be altered and monitored through tuning the nanoparticle shape, size, material and the colloid’s local surface plasmon resonance (LSPR). Aptamers, synthetic affinity ligands derived from nucleic acids, provide a number of advantages for biorecognition of small molecules and toxins with low immunogenicity. DNA aptamers are simpler and more economical to produce at large scale, are capable of greater specificity and affinity than antibodies, are easily tailored to specific functional groups, can be used to tune inter-particle distance and shift the LSPR, and their intrinsic negative charge can be utilized for additional particle stability.1,2 Herein, a “turn-off” competitive binding assay platform involving two different plasmonic nanoparticles for the detection of the toxin bisphenol A (BPA) using SERS is presented. A derivative of the toxin is immobilized onto a silver coated magnetic nanoparticle (Ag@MNP), and a second solid silver nanoparticle (AgNP) is functionalized with the BPA aptamer and a Raman reporter molecule (RRM). The capture (Ag@MNP) and probe (AgNP) particles are mixed and the aptamer binding interaction draws the nanoparticles closer together, forming an assembly that results in an increased SERS signal intensity. This aptamer mediated assembly of the two nanoparticles results in a 100x enhancement of the SERS signal intensity from the RRM. These pre-bound aptamer/nanoparticle conjugates were then exposed to BPA in free solution and the competitive binding event was monitored by the decrease in SERS intensity.


RSC Advances | 2018

Introducing 12 new dyes for use with oligonucleotide functionalised silver nanoparticles for DNA detection with SERS

L. Pala; Samuel Mabbott; Karen Faulds; Matthew A. Bedics; Michael R. Detty; Duncan Graham

Oligonucleotide functionalised metallic nanoparticles (MNPs) have been shown to be an effective tool in the detection of disease-specific DNA and have been employed in a number of diagnostic assays. The MNPs are also capable of facilitating surface enhanced Raman scattering (SERS) enabling detection to become highly sensitive. Herein we demonstrate the expansion of the range of specific SERS-active oligonucleotide MNPs through the use of 12 new Raman-active monomethine and trimethine chalcogenopyrylium and benzochalcogenopyrylium derivatives. This has resulted in an increased ability to carry out multiplexed analysis beyond the current small pool of resonant and non-resonant Raman active molecules, that have been used with oligonucleotide functionalised nanoparticles. Each dye examined here contains a variation of sulphur and selenium atoms in the heterocyclic core, together with phenyl, 2-thienyl, or 2-selenophenyl substituents on the 2,2′,6, and 6′ positions of the chalcogenopyrylium dyes and 2 and 2′ positions of the benzochalcogenopyrylium dyes. The intensity of SERS obtained from each dye upon conjugate hybridisation with a complementary single stranded piece of DNA was explored. Differing concentrations of each dye (1000, 3000, 5000 and 7000 equivalents per NP-DNA conjugate) were used to understand the effects of Raman reporter coating on the overall Raman intensity. It was discovered that dye concentration did not affect the target/control ratio, which remained relatively constant throughout and that a lower concentration of Raman reporter was favourable in order to avoid NP instability. A relationship between the dye structure and SERS intensity was discovered, leaving scope for future development of specific dyes containing substituents favourable for discrimination in a multiplex by SERS. Methine dyes containing S and Se in the backbone and at least 2 phenyls as substituents give the highest SERS signal following DNA-induced aggregation. Principal component analysis (PCA) was performed on the data to show differentiation between the dye classes and highlight possible future multiplexing capabilities of the 12 investigated dyes.


Proceedings of SPIE | 2016

Engineering molecularly-active nanoplasmonic surfaces for DNA detection via colorimetry and Raman scattering

Esmaeil Heydari; Samuel Mabbott; David G. Thompson; Duncan Graham; Jonathan M. Cooper; Alasdair W. Clark

We report a novel nanophotonic biosensor surface capable of both colorimetric detection and Raman-scattered detection of DNA infection markers at extreme sensitivities. Combining direct-write lithography, dip-pen nanolithography based DNA patterning, and molecular self-assembly, we create molecularly-active plasmonic nanostructures onto which metallic nanoparticles are located via DNA-hybridization. Arraying these structures enables optical surfaces that change state when contacted by specific DNA sequences; shifting the surface color while simultaneously generating strong Raman-scattering signals. Patterning the DNA markers onto the plasmonic surface as micro-scale symbols results in easily identifiable color shifts, making this technique applicable to multiplexed lab-on-a-chip and point-of-care diagnostic applications.

Collaboration


Dive into the Samuel Mabbott's collaboration.

Top Co-Authors

Avatar

Duncan Graham

University of Strathclyde

View shared research outputs
Top Co-Authors

Avatar

Karen Faulds

University of Strathclyde

View shared research outputs
Top Co-Authors

Avatar

Michael R. Detty

State University of New York System

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Fay Nicolson

University of Strathclyde

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Konstantinos Plakas

State University of New York System

View shared research outputs
Researchain Logo
Decentralizing Knowledge