Samuel McLenachan
University of Western Australia
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Samuel McLenachan.
Neurobiology of Aging | 2012
Holly R. Chinnery; Samuel McLenachan; Timothy Humphries; Jelena Kezic; Xiangting Chen; Marc J. Ruitenberg; Paul G. McMenamin
Macrophages or activated microglia in the subretinal space are considered a hallmark of some retinal pathologies. We investigated the effects of age, pigmentation and CX(3)CR1 deficiency on the accumulation of macrophages/activated microglia in the outer retina of young and old Cx(3)cr1(gfp/gfp) (CX(3)CR1-deficient) or Cx(3)cr1(gfp/+) mice on either a pigmented (C57BL/6) or albino (BALB/c) background. Quantitative analysis of immunostained retinal-choroidal whole mounts revealed an increase in subretinal macrophage (SRMΦ) numbers in young Cx(3)cr1(gfp/gfp) mice compared with Cx(3)cr1(gfp/+) mice, however the increase was more marked in albino Cx(3)cr1(gfp/gfp) mice. In aged mice, large numbers of SRMΦ/activated microglia replete with autofluorescent debris were noted in both old pigmented Cx(3)cr1(gfp/gfp) and Cx(3)cr1(gfp/+) mice proving this accumulation was not CX(3)CR1-dependent. While CX(3)CR1 deficiency leads to an early onset of SRMΦ accumulation, our data reveal that this change occurs in both aged Cx(3)cr1(gfp/+) and Cx(3)cr1(gfp/gfp) pigmented mice in the absence of marked retinal degeneration and is likely a normal response to aging.
American Journal of Pathology | 2012
Holly R. Chinnery; Samuel McLenachan; N. Binz; Yan Sun; John V. Forrester; Mariapia A. Degli-Esposti; Eric Pearlman; Paul G. McMenamin
During bacterial and viral infections, unmethylated CpG-DNA released by proliferating and dying microbes is recognized by toll-like receptor (TLR) 9 in host cells, initiating innate immune responses. Many corneal infections occur secondary to epithelial breaches and represent a major cause of vision impairment and blindness globally. To mimic this clinical situation, we investigated mechanisms of TLR9 ligand-induced corneal inflammation in mice after epithelial debridement. Application of CpG oligodeoxynucleotides (ODNs) resulted in neutrophil and macrophage infiltration to the cornea and loss of transparency. By 6 hours after CpG-ODN administration, TLR9 mRNA was increased in the cornea and retina. In vivo clinical examination at 24 hours revealed inflammatory infiltrates in the vitreous and retina, which were confirmed ex vivo to be neutrophils and macrophages, along with activated resident microglia. CpG-ODN-induced intraocular inflammation was abrogated in TLR9(-/-) and macrophage-depleted mice. Bone marrow reconstitution of irradiated TLR9(-/-) mice with TLR9(+/+) bone marrow led to restored corneal inflammatory responses to CpG-ODN. Fluorescein isothiocyanate-CpG-ODN rapidly penetrated the cornea and ocular media to reach the retina, where it was present within CD68(+) retinal macrophages and microglia. These data show that topically applied CpG-ODN induces intraocular inflammation owing to TLR9 activation of monocyte-lineage cells. These novel findings indicate that microbial CpG-DNA released during bacterial and/or viral keratitis can cause widespread inflammation within the eye, including the retina.
Neurobiology of Aging | 2012
Holly R. Chinnery; Samuel McLenachan; Timothy Humphries; Jelena Kezic; Xiangting Chen; Marc J. Ruitenberg; Paul G. McMenamin
Macrophages or activated microglia in the subretinal space are considered a hallmark of some retinal pathologies. We investigated the effects of age, pigmentation and CX(3)CR1 deficiency on the accumulation of macrophages/activated microglia in the outer retina of young and old Cx(3)cr1(gfp/gfp) (CX(3)CR1-deficient) or Cx(3)cr1(gfp/+) mice on either a pigmented (C57BL/6) or albino (BALB/c) background. Quantitative analysis of immunostained retinal-choroidal whole mounts revealed an increase in subretinal macrophage (SRMΦ) numbers in young Cx(3)cr1(gfp/gfp) mice compared with Cx(3)cr1(gfp/+) mice, however the increase was more marked in albino Cx(3)cr1(gfp/gfp) mice. In aged mice, large numbers of SRMΦ/activated microglia replete with autofluorescent debris were noted in both old pigmented Cx(3)cr1(gfp/gfp) and Cx(3)cr1(gfp/+) mice proving this accumulation was not CX(3)CR1-dependent. While CX(3)CR1 deficiency leads to an early onset of SRMΦ accumulation, our data reveal that this change occurs in both aged Cx(3)cr1(gfp/+) and Cx(3)cr1(gfp/gfp) pigmented mice in the absence of marked retinal degeneration and is likely a normal response to aging.
Experimental Eye Research | 2015
Samuel McLenachan; Aaron L. Magno; David Ramos; Joana Catita; Paul G. McMenamin; Fred K. Chen; Elizabeth Rakoczy; Jesús Ruberte
The mouse retina is a commonly used animal model for the study of pathogenesis and treatment of blinding retinal vascular diseases such as diabetic retinopathy. In this study, we aimed to characterize normal and pathological variations in vascular anatomy in the mouse retina using fluorescein angiography visualized with scanning laser ophthalmoscopy and optical coherence tomography (SLO-OCT). We examined eyes from C57BL/6J wild type mice as well as the Ins2(Akita) and Akimba mouse models of diabetic retinopathy using the Heidelberg Retinal Angiography (HRA) and OCT system. Angiography was performed on three focal planes to examine distinct vascular layers. For comparison with angiographic data, exxa0vivo analyses, including Indian ink angiography, histology and 3D confocal scanning laser microscopy were performed in parallel. All layers of the mouse retinal vasculature could be readily visualized during fluorescein angiography by SLO-OCT. Blood vessel density was increased in the deep vascular plexus (DVP) compared with the superficial vascular plexus (SVP). Arteriolar and venular typologies were established and structural differences were observed between venular types. Unexpectedly, the hyaloid artery was found to persist in 15% of C57BL/6 mice, forming anastomoses with peripheral retinal capillaries. Fluorescein leakage was easily detected in Akimba retinae by angiography, but was not observed in Ins2(Akita) mice. Blood vessel density was increased in the DVP of 6 month old Ins2(Akita) mice, while the SVP displayed reduced branching in precapillary arterioles. In summary, we present the first comprehensive characterization of the mouse retinal vasculature by SLO-OCT fluorescein angiography. Using this clinical imaging technique, we report previously unrecognized variations in C57BL/6J vascular anatomy and novel features of vascular retinopathy in the Ins2(Akita) mouse model of diabetes.
Clinical and Experimental Ophthalmology | 2013
Samuel McLenachan; Xiangting Chen; Paul G. McMenamin; Elizabeth Rakoczy
The Ins2Akita mouse has been reported to display retinal pathology degeneration associated with advanced diabetic retinopathy. In the present study, we monitored retinal changes in these mice to establish if this model displays clinical features associated with advanced diabetic retinopathy in human patients.
Fibrogenesis & Tissue Repair | 2015
Ana Belen Alvarez Palomo; Samuel McLenachan; Fred K. Chen; Lyndon da Cruz; Rodney J. Dilley; Jordi Requena; Michaela Lucas; Andrew Lucas; Micha Drukker; Michael J. Edel
Since the discovery of induced pluripotent stem cells (iPSC) in 2006, the symptoms of many human diseases have been reversed in animal models with iPSC therapy, setting the stage for future clinical development. From the animal data it is clear that iPSC are rapidly becoming the lead cell type for cell replacement therapy and for the newly developing field of iPSC-derived body organ transplantation. The first human pathology that might be treated in the near future with iPSC is age-related macular degeneration (AMD), which has recently passed the criteria set down by regulators for phase I clinical trials with allogeneic human embryonic stem cell-derived cell transplantation in humans. Given that iPSC are currently in clinical trial in Japan (RIKEN) to treat AMD, the establishment of a set of international criteria to make clinical-grade iPSC and their differentiated progeny is the next step in order to prepare for future autologous cell therapy clinical trials. Armed with clinical-grade iPSC, we can then specifically test for their threat of cancer, for proper and efficient differentiation to the correct cell type to treat human disease and then to determine their immunogenicity. Such a rigorous approach sets a far more relevant paradigm for their intended future use than non-clinical-grade iPSC. This review focuses on the latest developments regarding the first possible use of iPSC-derived retinal pigment epithelial cells in treating human disease, covers data gathered on animal models to date and methods to make clinical-grade iPSC, suggests techniques to ensure quality control and discusses possible clinical immune responses.
American Journal of Pathology | 2013
Martin S. Zinkernagel; Holly R. Chinnery; Monique Ong; Claire Petitjean; Valentina Voigt; Samuel McLenachan; Paul G. McMenamin; Geoffrey R. Hill; John V. Forrester; Matthew E. Wikstrom; Mariapia A. Degli-Esposti
Microglial cells are the resident macrophages of the central nervous system and participate in both innate and adaptive immune responses but can also lead to exacerbation of neurodegenerative pathologies after viral infections. Microglia in the outer layers of the retina and the subretinal space are thought to be involved in retinal diseases where low-grade chronic inflammation and oxidative stress play a role. This study investigated the effect of systemic infection with murine cytomegalovirus on the distribution and dynamics of retinal microglia cells. Systemic infection with murine cytomegalovirus elicited a significant increase in the number of microglia in the subretinal space and an accumulation of iris macrophages, along with morphological signs of activation. Interferon γ (IFN-γ)-deficient mice failed to induce changes in microglia distribution. Bone marrow chimera experiments confirmed that microglial cells in the subretinal space were not recruited from the circulating monocyte pool, but rather represented an accumulation of resident microglial cells from within the retina. Our results demonstrate that a systemic viral infection can lead to IFN-γ-mediated accumulation of microglia into the outer retinal layers and offer proof of concept that systemic viral infections alter the ocular microenvironment and therefore, may influence the course of diseases such as macular degeneration, diabetic retinopathy, or autoimmune uveitis, where low-grade inflammation is implicated.
Stem Cells and Development | 2012
Samuel McLenachan; Cristina Menchón; Angel Raya; Antonella Consiglio; Michael J. Edel
The proper differentiation and threat of cancer rising from the application of induced pluripotent stem (iPS) cells are major bottlenecks in the field and are thought to be inherently linked to the pluripotent nature of iPS cells. To address this question, we have compared iPS cells to embryonic stem cells (ESCs), the gold standard of ground state pluripotency, in search for proteins that may improve pluripotency of iPS cells. We have found that when reprogramming somatic cells toward pluripotency, 1%-5% of proteins of 5 important cell functions are not set to the correct expression levels compared to ESCs, including mainly cell cycle proteins. We have shown that resetting cyclin A(1) protein expression of early-passage iPS cells closer to the ground state pluripotent state of mouse ESCs improves the pluripotency and reduces the threat of cancer of iPS cells. This work is a proof of principle that reveals that setting expression of certain proteins correctly during reprogramming is essential for achieving ESC-state pluripotency. This finding would be of immediate help to those researchers in different fields of iPS cell work that specializes in cell cycle, apoptosis, cell adhesion, cell signaling, and cytoskeleton.
PLOS ONE | 2013
Samuel McLenachan; Dan Zhang; Ana Belen Alvarez Palomo; Michael J. Edel; Fred K. Chen
The use of synthetic mRNA as an alternative gene delivery vector to traditional DNA-based constructs provides an effective method for inducing transient gene expression in cell cultures without genetic modification. Delivery of mRNA has been proposed as a safer alternative to viral vectors in the induction of pluripotent cells for regenerative therapies. Although mRNA transfection of fibroblasts, dendritic and embryonic stem cells has been described, mRNA delivery to neurosphere cultures has not been previously reported. Here we sought to establish an efficient method for delivering mRNA to primary neurosphere cultures. Neurospheres derived from the subventricular zone of adult mice or from human embryonic stem cells were transfected with EGFP mRNA by lipofection and electroporation. Transfection efficiency and expression levels were monitored by flow cytometry. Cell survival following transfection was examined using live cell counting and the MTT assay. Both lipofection and electroporation provided high efficiency transfection of neurospheres. In comparison with lipofection, electroporation resulted in increased transfection efficiencies, but lower expression per cell and shorter durations of expression. Additional rounds of lipofection renewed EGFP expression in neurospheres, suggesting this method may be suitable for reprogramming applications. In summary, we have developed a protocol for achieving high efficiency transfection rates in mouse and human neurosphere cell culture that can be applied for future studies of gene function studies in neural stem cells, such as defining efficient differentiation protocols for glial and neuronal linages.
British Journal of Ophthalmology | 2013
Nermina N. Vagaja; N. Binz; Samuel McLenachan; Elizabeth Rakoczy; Paul G. McMenamin
Aims To evaluate the impact of systemic exposure to bacterial lipopolysaccharide (LPS) on a rodent model of background diabetic retinopathy. Methods Toll-like receptor 4 (TLR4)-mediated systemic inflammation was induced in Ins2Akita heterozygotes and age-matched C57BL6/J-Ins2+ littermates by single or repeated intraperitoneal injections of the TLR4 ligand LPS (9u2005µg/g body weight). 24 hours after a single injection in 7-week-old mice retinal Il1b, Tnfa and Vegf transcripts were measured with real-time PCR. Vascular endothelial growth factor (VEGF) protein levels were evaluated with bead-based immunoassay. Leukostasis and endothelial injury were assessed in retinal wholemounts following perfusion with rhodamine or FITC conjugated concanavalin A to label leukocytes and propidium iodide to label dead or injured cells. In mice which had received three fortnightly injections between 10 and 16u2005weeks of age, retinal thicknesses and vascular structure were evaluated at 17–18u2005weeks of age using optical coherence tomography (OCT) and fluorescein angiography. Retinal architecture was assesed using resin-based histology. Results Compared with normoglycaemic controls, systemic LPS exposure in Ins2Akita mice was associated with a 3.5-fold increase in endothelial cell injury and attenuated leukostasis in the retinal vasculature. Hyperglycaemia or acute LPS inflammation did not increase retinal VEGF content. Thinning (10–13u2005µm) of posterior retina was detected with OCT 2u2005weeks after repeated exposure to LPS in Ins2Akita mice but not in normoglycaemic controls. Capillary networks and retinal morphology were unaffected by recurrent LPS inflammation in Ins2Akita and control mice. Conclusions In hyperglycaemic mice, exposure to systemic LPS was associated with two hallmark pathologies of early background diabetic retinopathy, namely, the injury of capillary endothelium and in vivo thinning of the retina.