Samuel Remy
European Centre for Medium-Range Weather Forecasts
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Samuel Remy.
Remote Sensing | 2017
Bastien Rouquié; Olivier Hagolle; François-Marie Bréon; Olivier Boucher; Camille Desjardins; Samuel Remy
The quantitative use of space-based optical imagery requires atmospheric correction to separate the contributions from the surface and the atmosphere. The MACCS (Multi-sensor Atmospheric Correction and Cloud Screening)-ATCOR (Atmospheric and Topographic Correction) Joint Algorithm, called MAJA, is a numerical tool designed to perform cloud detection and atmospheric correction. For the correction of aerosols effects, MAJA makes an estimate of the aerosol optical thickness (AOT) based on multi-temporal and multi-spectral criteria, but there is insufficient information to infer the aerosol type. The current operational version of MAJA uses an aerosol type which is constant with time, and this assumption impacts the quality of the atmospheric correction. In this study, we assess the potential of using an aerosol type derived from the Copernicus Atmosphere Monitoring Service (CAMS) operational analysis. The performances, with and without the CAMS information, are evaluated. Firstly, in terms of the aerosol optical thickness retrievals, a comparison against sunphotometer measurements over several sites indicates an improvement over arid sites, with a root-mean-square error (RMSE) reduced by 28% (from 0.095 to 0.068), although there is a slight degradation over vegetated sites (RMSE increased by 13%, from 0.054 to 0.061). Secondly, a direct validation of the retrieved surface reflectances at the La Crau station (France) indicates a reduction of the relative bias by 2.5% on average over the spectral bands. Thirdly, based on the assumption that surface reflectances vary slowly with time, a noise criterion was set up, exhibiting no improvement over the spectral bands and the validation sites when using CAMS data, partly explained by a slight increase in the surface reflectances themselves. Finally, the new method presented in this study provides a better way of using the MAJA processor in an operational environment because the aerosol type used for the correction is automatically inferred from CAMS data, and is no longer a parameter to be defined in advance.
Atmospheric Chemistry and Physics | 2016
Johannes Flemming; Angela Benedetti; A. Inness; Richard J. Engelen; L. Jones; V. Huijnen; Samuel Remy; Mark Parrington; Martin Suttie; Alessio Bozzo; V.-H. Peuch; Dimitris Akritidis; E. Katragkou
Atmospheric Chemistry and Physics | 2016
N. Huneeus; S. Basart; Stephanie Fiedler; J.-J. Morcrette; Angela Benedetti; J. Mulcahy; Enric Terradellas; C. Perez Garcia-Pando; G. Pejanovic; S. Nickovic; P. Arsenovic; Michael Schulz; E. Cuevas; J. M. Baldasano; J. Pey; Samuel Remy; B. Cvetkovic
Atmospheric Chemistry and Physics | 2015
Andreas Veira; Silvia Kloster; Stiig Wilkenskjeld; Samuel Remy
Atmospheric Chemistry and Physics | 2015
A. Inness; Angela Benedetti; Johannes Flemming; V. Huijnen; Johannes W. Kaiser; Mark Parrington; Samuel Remy
Atmospheric Chemistry and Physics | 2015
Samuel Remy; Angela Benedetti; Alessio Bozzo; T. Haiden; L. Jones; M. Razinger; Johannes Flemming; Richard J. Engelen; V.-H. Peuch; Jean Noël Thépaut
Atmospheric Chemistry and Physics | 2017
Albert Ansmann; Franziska Rittmeister; Ronny Engelmann; S. Basart; Oriol Jorba; C. Spyrou; Samuel Remy; Annett Skupin; Holger Baars; Patric Seifert; Fabian Senf; Thomas Kanitz
Atmospheric Chemistry and Physics | 2014
Samuel Remy; Johannes W. Kaiser
Atmospheric Chemistry and Physics | 2017
Samuel Remy; Andreas Veira; Ronan Paugam; Mikhail Sofiev; Johannes W. Kaiser; Franco Marenco; Sharon Burton; Angela Benedetti; Richard J. Engelen; Richard A. Ferrare; J. W. Hair
Atmospheric Chemistry and Physics | 2016
Franco Marenco; Ben Johnson; Justin M. Langridge; J. Mulcahy; Angela Benedetti; Samuel Remy; L. Jones; Kate Szpek; James M. Haywood; Karla M. Longo; Paulo Artaxo