Samuel T. Coradetti
University of California, Berkeley
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Samuel T. Coradetti.
Proceedings of the National Academy of Sciences of the United States of America | 2012
Samuel T. Coradetti; James P. Craig; Yi Xiong; Teresa Shock; Chaoguang Tian; N. Louise Glass
Rational engineering of filamentous fungi for improved cellulase production is hampered by our incomplete knowledge of transcriptional regulatory networks. We therefore used the model filamentous fungus Neurospora crassa to search for uncharacterized transcription factors associated with cellulose deconstruction. A screen of a N. crassa transcription factor deletion collection identified two uncharacterized zinc binuclear cluster transcription factors (clr-1 and clr-2) that were required for growth and enzymatic activity on cellulose, but were not required for growth or hemicellulase activity on xylan. Transcriptional profiling with next-generation sequencing methods refined our understanding of the N. crassa transcriptional response to cellulose and demonstrated that clr-1 and clr-2 were required for the bulk of that response, including induction of all major cellulase and some major hemicellulase genes. Functional CLR-1 was necessary for expression of clr-2 and efficient cellobiose utilization. Phylogenetic analyses showed that CLR-1 and CLR-2 are conserved in the genomes of most filamentous ascomycete fungi capable of degrading cellulose. In Aspergillus nidulans, a strain carrying a deletion of the clr-2 homolog (clrB) failed to induce cellulase gene expression and lacked cellulolytic activity on Avicel. Further manipulation of this control system in industrial production strains may significantly improve yields of cellulases for cellulosic biofuel production.
Annual Review of Microbiology | 2013
N. Louise Glass; Monika Schmoll; Jamie H. D. Cate; Samuel T. Coradetti
Plant biomass degradation by fungi requires a diverse set of secreted enzymes and significantly contributes to the global carbon cycle. Recent advances in genomic and systems-level studies have begun to reveal how filamentous ascomycete species exploit carbon sources in different habitats. These studies have laid the groundwork for unraveling new enzymatic strategies for deconstructing the plant cell wall, including the discovery of polysaccharide monooxygenases that enhance the activity of cellulases. The identification of genes encoding proteins lacking functional annotation, but that are coregulated with cellulolytic genes, suggests functions associated with plant biomass degradation remain to be elucidated. Recent research shows that signaling cascades mediating cellulolytic responses often act in a light-dependent manner and show crosstalk with other metabolic pathways. In this review, we cover plant biomass degradation, from sensing, to transmission and modulation of signals, to activation of transcription factors and gene induction, to enzyme complement and function.
MicrobiologyOpen | 2013
Samuel T. Coradetti; Yi Xiong; N. Louise Glass
Cellulose is recalcitrant to deconstruction to glucose for use in fermentation strategies for biofuels and chemicals derived from lignocellulose. In Neurospora crassa, the transcriptional regulator, CLR‐2, is required for cellulolytic gene expression and cellulose deconstruction. To assess conservation and divergence of cellulase gene regulation between fungi from different ecological niches, we compared clr‐2 function with its ortholog (clrB) in the distantly related species, Aspergillus nidulans. Transcriptional profiles induced by exposure to crystalline cellulose were similar in both species. Approximately 50% of the cellulose‐responsive genes showed strict dependence on functional clr‐2/clrB, with a subset of 28 genes encoding plant biomass degrading enzymes that were conserved between N. crassa and A. nidulans. Importantly, misexpression of clr‐2 under noninducing conditions was sufficient to drive cellulase gene expression, secretion, and activity in N. crassa, to a level comparable to wild type exposed to Avicel. However, misexpression of clrB in A. nidulans was not sufficient to drive cellulase gene expression under noninducing conditions, although an increase in cellulase activity was observed under crystalline cellulose conditions. Manipulation of clr‐2 orthologs among filamentous fungi may enable regulated cellulosic enzyme production in a wide array of culture conditions and host strains, potentially reducing costs associated with enzyme production for plant cell wall deconstruction. However, this functionality may require additional engineering in some species.
Fungal Genetics and Biology | 2014
Yi Xiong; Samuel T. Coradetti; Xin Li; Marina A. Gritsenko; Therese R. Clauss; Vlad Petyuk; David G. Camp; Richard D. Smith; Jamie H. D. Cate; Feng Yang; N. Louise Glass
Improving cellulolytic enzyme production by plant biomass degrading fungi holds great potential in reducing costs associated with production of next-generation biofuels generated from lignocellulose. How fungi sense cellulosic materials and respond by secreting enzymes has mainly been examined by assessing function of transcriptional regulators and via transcriptional profiling. Here, we obtained global proteomic and phosphoproteomic profiles of the plant biomass degrading filamentous fungus Neurospora crassa grown on different carbon sources, i.e. sucrose, no carbon, and cellulose, by performing isobaric tags for relative and absolute quantification (iTRAQ)-based LC-MS/MS analyses. A comparison between proteomes and transcriptomes under identical carbon conditions suggests that extensive post-transcriptional regulation occurs in N. crassa in response to exposure to cellulosic material. Several hundred amino acid residues with differential phosphorylation levels on crystalline cellulose (Avicel) or carbon-free medium vs sucrose medium were identified, including phosphorylation sites in a major transcriptional activator for cellulase genes, CLR1, as well as a cellobionic acid transporter, CBT1. Mutation of phosphorylation sites on CLR1 did not have a major effect on transactivation of cellulase production, while mutation of phosphorylation sites in CBT1 increased its transporting capacity. Our data provides rich information at both the protein and phosphorylation levels of the early cellular responses to carbon starvation and cellulosic induction and aids in a greater understanding of the underlying post-transcriptional regulatory mechanisms in filamentous fungi.
Mbio | 2015
James P. Craig; Samuel T. Coradetti; Trevor L. Starr; N. Louise Glass
ABSTRACT Fungal deconstruction of the plant cell requires a complex orchestration of a wide array of intracellular and extracellular enzymes. In Neurospora crassa, CLR-1, CLR-2, and XLR-1 have been identified as key transcription factors regulating plant cell wall degradation in response to soluble sugars. The XLR-1 regulon was defined using a constitutively active mutant allele, resulting in hemicellulase gene expression and secretion under noninducing conditions. To define genes directly regulated by CLR-1, CLR-2, and XLR-1, we performed chromatin immunoprecipitation and next-generation sequencing (ChIPseq) on epitope-tagged constructs of these three transcription factors. When N. crassa is exposed to plant cell wall material, CLR-1, CLR-2, and XLR-1 individually bind to the promoters of the most strongly induced genes in their respective regulons. These include promoters of genes encoding cellulases for CLR-1 and CLR-2 (CLR-1/CLR-2) and promoters of genes encoding hemicellulases for XLR-1. CLR-1 bound to its regulon under noninducing conditions; however, this binding alone did not translate into gene expression and enzyme secretion. Motif analysis of the bound genes revealed conserved DNA binding motifs, with the CLR-2 motif matching that of its closest paralog in Saccharomyces cerevisiae, Gal4p. Coimmunoprecipitation studies showed that CLR-1 and CLR-2 act in a homocomplex but not as a CLR-1/CLR-2 heterocomplex. IMPORTANCE Understanding fungal regulation of complex plant cell wall deconstruction pathways in response to multiple environmental signals via interconnected transcriptional circuits provides insight into fungus/plant interactions and eukaryotic nutrient sensing. Coordinated optimization of these regulatory networks is likely required for optimal microbial enzyme production. Understanding fungal regulation of complex plant cell wall deconstruction pathways in response to multiple environmental signals via interconnected transcriptional circuits provides insight into fungus/plant interactions and eukaryotic nutrient sensing. Coordinated optimization of these regulatory networks is likely required for optimal microbial enzyme production.
Biotechnology for Biofuels | 2017
Areejit Samal; James P. Craig; Samuel T. Coradetti; J. Philipp Benz; James A. Eddy; Nathan D. Price; N. Louise Glass
BackgroundPlant biomass degradation by fungal-derived enzymes is rapidly expanding in economic importance as a clean and efficient source for biofuels. The ability to rationally engineer filamentous fungi would facilitate biotechnological applications for degradation of plant cell wall polysaccharides. However, incomplete knowledge of biomolecular networks responsible for plant cell wall deconstruction impedes experimental efforts in this direction.ResultsTo expand this knowledge base, a detailed network of reactions important for deconstruction of plant cell wall polysaccharides into simple sugars was constructed for the filamentous fungus Neurospora crassa. To reconstruct this network, information was integrated from five heterogeneous data types: functional genomics, transcriptomics, proteomics, genetics, and biochemical characterizations. The combined information was encapsulated into a feature matrix and the evidence weighted to assign annotation confidence scores for each gene within the network. Comparative analyses of RNA-seq and ChIP-seq data shed light on the regulation of the plant cell wall degradation network, leading to a novel hypothesis for degradation of the hemicellulose mannan. The transcription factor CLR-2 was subsequently experimentally shown to play a key role in the mannan degradation pathway of N. crassa.ConclusionsHere we built a network that serves as a scaffold for integration of diverse experimental datasets. This approach led to the elucidation of regulatory design principles for plant cell wall deconstruction by filamentous fungi and a novel function for the transcription factor CLR-2. This expanding network will aid in efforts to rationally engineer industrially relevant hyper-production strains.
Proceedings of the National Academy of Sciences of the United States of America | 2017
Lori B. Huberman; Samuel T. Coradetti; N. Louise Glass
Significance Microbes have evolved complex signaling networks to identify and prioritize utilization of available energy sources. For many fungi, such as Neurospora crassa, this entails distinguishing between an array of carbon sources, including insoluble carbohydrates in plant cell walls. Here, we identified a repressor of the cellulose-response pathway in N. crassa. Using this derepressed mutant, we implicated the conserved hyperosmotic-response MAP kinase pathway in regulating the response of N. crassa to insoluble carbohydrates. We hypothesize that fungal species that degrade plant biomass use osmolarity as a proxy for soluble sugar in the environment to regulate their nutritional responses, enabling tailored production of lignocellulases. This finding could help in battling fungal plant diseases and in the production of second-generation biofuels. Identifying nutrients available in the environment and utilizing them in the most efficient manner is a challenge common to all organisms. The model filamentous fungus Neurospora crassa is capable of utilizing a variety of carbohydrates, from simple sugars to the complex carbohydrates found in plant cell walls. The zinc binuclear cluster transcription factor CLR-1 is necessary for utilization of cellulose, a major, recalcitrant component of the plant cell wall; however, expression of clr-1 in the absence of an inducer is not sufficient to induce cellulase gene expression. We performed a screen for unidentified actors in the cellulose-response pathway and identified a gene encoding a hypothetical protein (clr-3) that is required for repression of CLR-1 activity in the absence of an inducer. Using clr-3 mutants, we implicated the hyperosmotic-response pathway in the tunable regulation of glycosyl hydrolase production in response to changes in osmolarity. The role of the hyperosmotic-response pathway in nutrient sensing may indicate that cells use osmolarity as a proxy for the presence of free sugar in their environment. These signaling pathways form a nutrient-sensing network that allows N. crassa cells to tightly regulate gene expression in response to environmental conditions.
ACS Synthetic Biology | 2018
Toru Matsu-ura; Andrey Dovzhenok; Samuel T. Coradetti; Krithika R. Subramanian; Daniel R. Meyer; Jaesang J. Kwon; Caleb Kim; Nathan Salomonis; N. Louise Glass; Sookkyung Lim; Christian I. Hong
Second-generation or lignocellulosic biofuels are a tangible source of renewable energy, which is critical to combat climate change by reducing the carbon footprint. Filamentous fungi secrete cellulose-degrading enzymes called cellulases, which are used for production of lignocellulosic biofuels. However, inefficient production of cellulases is a major obstacle for industrial-scale production of second-generation biofuels. We used computational simulations to design and implement synthetic positive feedback loops to increase gene expression of a key transcription factor, CLR-2, that activates a large number of cellulases in a filamentous fungus, Neurospora crassa. Overexpression of CLR-2 reveals previously unappreciated roles of CLR-2 in lignocellulosic gene network, which enabled simultaneous induction of approximately 50% of 78 lignocellulosic degradation-related genes in our engineered Neurospora strains. This engineering results in dramatically increased cellulase activity due to cooperative orchestration of multiple enzymes involved in the cellulose degradation pathway. Our work provides a proof of principle in utilizing mathematical modeling and synthetic biology to improve the efficiency of cellulase synthesis for second-generation biofuel production.
Archive | 2012
Chaoguang Tian; Teresa Shock; N. Louise Glass; Samuel T. Coradetti; James P. Craig
Archive | 2012
Chaoguang Tian; Teresa Shock; N. Louise Glass; Samuel T. Coradetti; James P. Craig