Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Samuel V. Scarpino is active.

Publication


Featured researches published by Samuel V. Scarpino.


Proceedings of the National Academy of Sciences of the United States of America | 2012

Epigenetic transgenerational inheritance of altered stress responses

David Crews; Ross Gillette; Samuel V. Scarpino; Mohan Manikkam; Marina I. Savenkova; Michael K. Skinner

Ancestral environmental exposures have previously been shown to promote epigenetic transgenerational inheritance and influence all aspects of an individual’s life history. In addition, proximate life events such as chronic stress have documented effects on the development of physiological, neural, and behavioral phenotypes in adulthood. We used a systems biology approach to investigate in male rats the interaction of the ancestral modifications carried transgenerationally in the germ line and the proximate modifications involving chronic restraint stress during adolescence. We find that a single exposure to a common-use fungicide (vinclozolin) three generations removed alters the physiology, behavior, metabolic activity, and transcriptome in discrete brain nuclei in descendant males, causing them to respond differently to chronic restraint stress. This alteration of baseline brain development promotes a change in neural genomic activity that correlates with changes in physiology and behavior, revealing the interaction of genetics, environment, and epigenetic transgenerational inheritance in the shaping of the adult phenotype. This is an important demonstration in an animal that ancestral exposure to an environmental compound modifies how descendants of these progenitor individuals perceive and respond to a stress challenge experienced during their own life history.


Influenza and Other Respiratory Viruses | 2009

Initial human transmission dynamics of the pandemic (H1N1) 2009 virus in North America.

Babak Pourbohloul; Armando Ahued; Bahman Davoudi; Rafael Meza; Lauren Ancel Meyers; Danuta M. Skowronski; Ignacio Villaseñor; Fernando Galván; Patricia Cravioto; David J. D. Earn; Jonathan Dushoff; David N. Fisman; W. John Edmunds; Nathaniel Hupert; Samuel V. Scarpino; Jesús Trujillo; Miguel Lutzow; Jorge Morales; Ada Contreras; Carolina Chávez; David M. Patrick; Robert C. Brunham

Background  Between 5 and 25 April 2009, pandemic (H1N1) 2009 caused a substantial, severe outbreak in Mexico, and subsequently developed into the first global pandemic in 41 years. We determined the reproduction number of pandemic (H1N1) 2009 by analyzing the dynamics of the complete case series in Mexico City during this early period.


BMC Medicine | 2015

Asymptomatic transmission and the resurgence of Bordetella pertussis

Benjamin M. Althouse; Samuel V. Scarpino

BackgroundThe recent increase in whooping cough incidence (primarily caused by Bordetella pertussis) presents a challenge to both public health practitioners and scientists trying to understand the mechanisms behind its resurgence. Three main hypotheses have been proposed to explain the resurgence: 1) waning of protective immunity from vaccination or natural infection over time, 2) evolution of B. pertussis to escape protective immunity, and 3) low vaccine coverage. Recent studies have suggested a fourth mechanism: asymptomatic transmission from individuals vaccinated with the currently used acellular B. pertussis vaccines.MethodsUsing wavelet analyses of B. pertussis incidence in the United States (US) and United Kingdom (UK) and a phylodynamic analysis of 36 clinical B. pertussis isolates from the US, we find evidence in support of asymptomatic transmission of B. pertussis. Next, we examine the clinical, public health, and epidemiological consequences of asymptomatic B. pertussis transmission using a mathematical model.ResultsWe find that: 1) the timing of changes in age-specific attack rates observed in the US and UK are consistent with asymptomatic transmission; 2) the phylodynamic analysis of the US sequences indicates more genetic diversity in the overall bacterial population than would be suggested by the observed number of infections, a pattern expected with asymptomatic transmission; 3) asymptomatic infections can bias assessments of vaccine efficacy based on observations of B. pertussis-free weeks; 4) asymptomatic transmission can account for the observed increase in B. pertussis incidence; and 5) vaccinating individuals in close contact with infants too young to receive the vaccine (“cocooning” unvaccinated children) may be ineffective.ConclusionsAlthough a clear role for the previously suggested mechanisms still exists, asymptomatic transmission is the most parsimonious explanation for many of the observations surrounding the resurgence of B. pertussis in the US and UK. These results have important implications for B. pertussis vaccination policy and present a complicated scenario for achieving herd immunity and B. pertussis eradication.


EPJ Data Science | 2015

Enhancing disease surveillance with novel data streams: challenges and opportunities

Benjamin M. Althouse; Samuel V. Scarpino; Lauren Ancel Meyers; John W. Ayers; Marisa Bargsten; Joan Baumbach; John S. Brownstein; Lauren Castro; Hannah E. Clapham; Derek A. T. Cummings; Sara Y. Del Valle; Stephen Eubank; Geoffrey Fairchild; Lyn Finelli; Nicholas Generous; Dylan B. George; David Harper; Laurent Hébert-Dufresne; Michael A. Johansson; Kevin Konty; Marc Lipsitch; Gabriel J. Milinovich; Joseph D. Miller; Elaine O. Nsoesie; Donald R. Olson; Michael J. Paul; Philip M. Polgreen; Reid Priedhorsky; Jonathan M. Read; Isabel Rodriguez-Barraquer

Novel data streams (NDS), such as web search data or social media updates, hold promise for enhancing the capabilities of public health surveillance. In this paper, we outline a conceptual framework for integrating NDS into current public health surveillance. Our approach focuses on two key questions: What are the opportunities for using NDS and what are the minimal tests of validity and utility that must be applied when using NDS? Identifying these opportunities will necessitate the involvement of public health authorities and an appreciation of the diversity of objectives and scales across agencies at different levels (local, state, national, international). We present the case that clearly articulating surveillance objectives and systematically evaluating NDS and comparing the performance of NDS to existing surveillance data and alternative NDS data is critical and has not sufficiently been addressed in many applications of NDS currently in the literature.


Clinical Infectious Diseases | 2015

Epidemiological and Viral Genomic Sequence Analysis of the 2014 Ebola Outbreak Reveals Clustered Transmission

Samuel V. Scarpino; Atila Iamarino; Chad R. Wells; Dan Yamin; Martial L. Ndeffo-Mbah; Natasha Wenzel; Spencer J. Fox; Tolbert Nyenswah; Frederick L. Altice; Alison P. Galvani; Lauren Ancel Meyers; Jeffrey P. Townsend

Using Ebolavirus genomic and epidemiological data, we conducted the first joint analysis in which both data types were used to fit dynamic transmission models for an ongoing outbreak. Our results indicate that transmission is clustered, highlighting a potential bias in medical demand forecasts, and provide the first empirical estimate of underreporting.


Proceedings of the National Academy of Sciences of the United States of America | 2014

Opinion: Mathematical models: A key tool for outbreak response

Eric T. Lofgren; M. Elizabeth Halloran; Caitlin M. Rivers; John M. Drake; Travis C. Porco; Bryan Lewis; Wan Yang; Alessandro Vespignani; Jeffrey Shaman; Joseph N. S. Eisenberg; Marisa C. Eisenberg; Madhav V. Marathe; Samuel V. Scarpino; Kathleen A. Alexander; Rafael Meza; Matthew J. Ferrari; James M. Hyman; Lauren Ancel Meyers; Stephen Eubank

The 2014 outbreak of Ebola in West Africa is unprecedented in its size and geographic range, and demands swift, effective action from the international community. Understanding the dynamics and spread of Ebola is critical for directing interventions and extinguishing the epidemic; however, observational studies of local conditions have been incomplete and limited by the urgent need to direct resources to patient care.


PLOS Computational Biology | 2012

Optimizing Provider Recruitment for Influenza Surveillance Networks

Samuel V. Scarpino; Nedialko B. Dimitrov; Lauren Ancel Meyers

The increasingly complex and rapid transmission dynamics of many infectious diseases necessitates the use of new, more advanced methods for surveillance, early detection, and decision-making. Here, we demonstrate that a new method for optimizing surveillance networks can improve the quality of epidemiological information produced by typical provider-based networks. Using past surveillance and Internet search data, it determines the precise locations where providers should be enrolled. When applied to redesigning the provider-based, influenza-like-illness surveillance network (ILINet) for the state of Texas, the method identifies networks that are expected to significantly outperform the existing network with far fewer providers. This optimized network avoids informational redundancies and is thereby more effective than networks designed by conventional methods and a recently published algorithm based on maximizing population coverage. We show further that Google Flu Trends data, when incorporated into a network as a virtual provider, can enhance but not replace traditional surveillance methods.


New Phytologist | 2011

Environment‐dependent intralocus sexual conflict in a dioecious plant

Lynda F. Delph; Jonathan Andicoechea; Janet C. Steven; Christopher R. Herlihy; Samuel V. Scarpino; Daniela L. Bell

Intralocus sexual conflict is a form of conflict that does not involve direct interactions between males and females. It arises when selection on a shared trait with a common genetic basis differs between the sexes. Environmental factors, such as resource availability, may influence the expression and evolutionary outcome of such conflict. We quantified the genetic variance-covariance matrix, G, for both sexes of Silene latifolia for floral and leaf traits, as well as the between-sex matrix, B. We also quantified selection on the sexes via survival for 2 yr in four natural populations that varied in water availability. Environment-dependent intralocus sexual conflict exists for specific leaf area, a trait that is genetically correlated between the sexes. Males experienced significant negative selection, but only in populations with relatively limited water availability. Females experienced weakly positive or significant stabilizing selection on the same trait. Specific leaf area is genetically correlated with flower size and number, which are sexually dimorphic in this species. The extent of intralocus sexual conflict varied with the environment. Resolution of such conflict is likely to be confounded, given that specific leaf area is highly genetically integrated with other traits that are also divergent between the sexes.


The American Naturalist | 2014

Polyploid Formation Shapes Flowering Plant Diversity

Samuel V. Scarpino; Donald A. Levin; Lauren Ancel Meyers

Polyploidy, or whole genome duplication, has been an important feature of eukaryotic evolution. This is especially true in flowering plants, where all extant angiosperms have descended from polyploid species. Here we present a broad comparative analysis of the effect of polyploidy on flowering plant diversity. We examine the widely held hypothesis that polyploid flowering plants generate more diversity than their diploid counterparts, by fitting stochastic birth/death models to observed ploidal frequency data from 60 extant angiosperm genera. Our results suggest the opposite, that diploids speciate at higher rates than polyploids, through a combination of simple diploid speciation and tetraploidy. Importantly, the estimated diploid advantage stemmed primarily from a higher rate of polyploidization in diploids than polyploids. Our model is also able to account for the empirically observed correlation between polyploidy and species richness without assuming that polyploids have a speciation advantage over diploids.


Genetics | 2010

Patterns of neutral genetic variation on recombining sex chromosomes.

Mark Kirkpatrick; Rafael F. Guerrero; Samuel V. Scarpino

Many animals and plants have sex chromosomes that recombine over much of their length. Here we develop coalescent models for neutral sites on these chromosomes. The emphasis is on expected coalescence times (proportional to the expected amount of neutral genetic polymorphism), but we also derive some results for linkage disequilibria between neutral sites. We analyze the standard neutral model, a model with polymorphic Y chromosomes under balancing selection, and the invasion of a neo-Y chromosome. The results may be useful for testing hypotheses regarding how new sex chromosomes originate and how selection acts upon them.

Collaboration


Dive into the Samuel V. Scarpino's collaboration.

Top Co-Authors

Avatar

Lauren Ancel Meyers

University of Texas at Austin

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Igor Holas

University of Texas at Austin

View shared research outputs
Top Co-Authors

Avatar

Paul T. von Hippel

University of Texas at Austin

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

James G. Scott

University of Texas at Austin

View shared research outputs
Top Co-Authors

Avatar

Nedialko B. Dimitrov

University of Texas at Austin

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Damien Caillaud

University of Texas at Austin

View shared research outputs
Top Co-Authors

Avatar

Margaret C. Crofoot

Smithsonian Tropical Research Institute

View shared research outputs
Researchain Logo
Decentralizing Knowledge