Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Samuel Y. Ng is active.

Publication


Featured researches published by Samuel Y. Ng.


Immunity | 2009

Genome-wide Lineage-Specific Transcriptional Networks Underscore Ikaros-Dependent Lymphoid Priming in Hematopoietic Stem Cells

Samuel Y. Ng; Toshimi Yoshida; Jiangwen Zhang; Katia Georgopoulos

The mechanisms regulating lineage potential during early hematopoiesis were investigated. First, a cascade of lineage-affiliated gene expression signatures, primed in hematopoietic stem cells (HSCs) and differentially propagated in lineage-restricted progenitors, was identified. Lymphoid transcripts were primed as early as the HSC, together with myeloid and erythroid transcripts. Although this multilineage priming was resolved upon subsequent lineage restrictions, an unexpected cosegregation of lymphoid and myeloid gene expression and potential past a nominal myeloid restriction point was identified. Finally, we demonstrated that whereas the zinc finger DNA-binding factor Ikaros was required for induction of lymphoid lineage priming in the HSC, it was also necessary for repression of genetic programs compatible with self-renewal and multipotency downstream of the HSC. Taken together, our studies provide new insight into the priming and restriction of lineage potentials during early hematopoiesis and identify Ikaros as a key bivalent regulator of this process.


Genes & Development | 2008

The role of the chromatin remodeler Mi-2β in hematopoietic stem cell self-renewal and multilineage differentiation

Toshimi Yoshida; Idit Hazan; Jiangwen Zhang; Samuel Y. Ng; Taku Naito; Hugo J. Snippert; Elizabeth J. Heller; Xiaoqing Qi; Lee N. Lawton; Christine J. Williams; Katia Georgopoulos

The ability of somatic stem cells to self-renew and differentiate into downstream lineages is dependent on specialized chromatin environments that keep stem cell-specific genes active and key differentiation factors repressed but poised for activation. The epigenetic factors that provide this type of regulation remain ill-defined. Here we provide the first evidence that the SNF2-like ATPase Mi-2beta of the Nucleosome Remodeling Deacetylase (NuRD) complex is required for maintenance of and multilineage differentiation in the early hematopoietic hierarchy. Shortly after conditional inactivation of Mi-2beta, there is an increase in cycling and a decrease in quiescence in an HSC (hematopoietic stem cell)-enriched bone marrow population. These cycling mutant cells readily differentiate into the erythroid lineage but not into the myeloid and lymphoid lineages. Together, these effects result in an initial expansion of mutant HSC and erythroid progenitors that are later depleted as more differentiated proerythroblasts accumulate at hematopoietic sites exhibiting features of erythroid leukemia. Examination of gene expression in the mutant HSC reveals changes in the expression of genes associated with self-renewal and lineage priming and a pivotal role of Mi-2beta in their regulation. Thus, Mi-2beta provides the hematopoietic system with immune cell capabilities as well as with an extensive regenerative capacity.


Cancer Cell | 2016

The Public Repository of Xenografts Enables Discovery and Randomized Phase II-like Trials in Mice

Elizabeth Townsend; Mark A. Murakami; Alexandra N. Christodoulou; Amanda L. Christie; Johannes Köster; Tiffany DeSouza; Elizabeth A. Morgan; Scott P. Kallgren; Huiyun Liu; Shuo-Chieh Wu; Olivia Plana; Joan Montero; Kristen E. Stevenson; Prakash Rao; Raga Vadhi; Michael Andreeff; Philippe Armand; Karen K. Ballen; Patrizia Barzaghi-Rinaudo; Sarah Cahill; Rachael A. Clark; Vesselina G. Cooke; Matthew S. Davids; Daniel J. DeAngelo; David M. Dorfman; Hilary Eaton; Benjamin L. Ebert; Julia Etchin; Brant Firestone; David C. Fisher

More than 90% of drugs with preclinical activity fail in human trials, largely due to insufficient efficacy. We hypothesized that adequately powered trials of patient-derived xenografts (PDX) in mice could efficiently define therapeutic activity across heterogeneous tumors. To address this hypothesis, we established a large, publicly available repository of well-characterized leukemia and lymphoma PDXs that undergo orthotopic engraftment, called the Public Repository of Xenografts (PRoXe). PRoXe includes all de-identified information relevant to the primary specimens and the PDXs derived from them. Using this repository, we demonstrate that large studies of acute leukemia PDXs that mimic human randomized clinical trials can characterize drug efficacy and generate transcriptional, functional, and proteomic biomarkers in both treatment-naive and relapsed/refractory disease.


Current Opinion in Immunology | 2010

Awakening lineage potential by Ikaros-mediated transcriptional priming

Toshimi Yoshida; Samuel Y. Ng; Katia Georgopoulos

Bioinformatic studies on a revised hierarchy of hematopoietic progenitors have provided a genome-wide view of lineage-affiliated transcriptional programs directing early hematopoiesis. Unexpectedly, lymphoid, myeloid, and erythroid gene expression programs were primed with similar frequency at the multipotent progenitor stage indicating a stochastic nature to this process. Multilineage transcriptional priming is quickly resolved upon erythroid lineage restriction with both lymphoid and myeloid transcriptional programs rapidly extinguished. However, expression of lymphoid and myeloid factors remains active past nominal lymphoid and myeloid lineage restrictions, revealing a common genetic network utilized by both pathways. Priming and resolution of multilineage potential is dependent on the activity of the DNA binding factor Ikaros. Ikaros primes the lymphoid transcriptional program in the HSC and represses the stem cell and other disparate transcriptional programs downstream of the HSC. Loss of Ikaros removes the lymphoid leg of the immune system and may confer aberrant self-renewing properties to myeloid progenitors.


Cancer Cell | 2016

Erratum: The Public Repository of Xenografts Enables Discovery and Randomized Phase II-like Trials in Mice (Cancer Cell (2016) 29 (574–586))

Elizabeth Townsend; Mark A. Murakami; Alexandra N. Christodoulou; Amanda L. Christie; Johannes Köster; Tiffany DeSouza; Elizabeth A. Morgan; Scott P. Kallgren; Huiyun Liu; Shuo Chieh Wu; Olivia Plana; Joan Montero; Kristen E. Stevenson; Prakash Rao; Raga Vadhi; Michael Andreeff; Philippe Armand; Karen K. Ballen; Patrizia Barzaghi-Rinaudo; Sarah Cahill; Rachael A. Clark; Vesselina G. Cooke; Matthew S. Davids; Daniel J. DeAngelo; David M. Dorfman; Hilary Eaton; Benjamin L. Ebert; Julia Etchin; Brant Firestone; David C. Fisher

Elizabeth C. Townsend, Mark A. Murakami, Alexandra Christodoulou, Amanda L. Christie, Johannes Köster, Tiffany A. DeSouza, Elizabeth A. Morgan, Scott P. Kallgren, Huiyun Liu, Shuo-Chieh Wu, Olivia Plana, Joan Montero, Kristen E. Stevenson, Prakash Rao, Raga Vadhi, Michael Andreeff, Philippe Armand, Karen K. Ballen, Patrizia Barzaghi-Rinaudo, Sarah Cahill, Rachael A. Clark, Vesselina G. Cooke, Matthew S. Davids, Daniel J. DeAngelo, David M. Dorfman, Hilary Eaton, Benjamin L. Ebert, Julia Etchin, Brant Firestone, David C. Fisher, Arnold S. Freedman, Ilene A. Galinsky, Hui Gao, Jacqueline S. Garcia, Francine Garnache-Ottou, Timothy A. Graubert, Alejandro Gutierrez, Ensar Halilovic, Marian H. Harris, Zachary T. Herbert, Steven M. Horwitz, Giorgio Inghirami, Andrew M. Intlekofer, Moriko Ito, Shai Izraeli, Eric D. Jacobsen, Caron A. Jacobson, Sébastien Jeay, Irmela Jeremias, Michelle A. Kelliher, Raphael Koch, Marina Konopleva, Nadja Kopp, Steven M. Kornblau, Andrew L. Kung, Thomas S. Kupper, Nicole R. LeBoeuf, Ann S. LaCasce, Emma Lees, Loretta S. Li, A. Thomas Look, Masato Murakami, Markus Muschen, Donna Neuberg, Samuel Y. Ng, Oreofe O. Odejide, Stuart H. Orkin, Rachel R. Paquette, Andrew E. Place, Justine E. Roderick, Jeremy A. Ryan, Stephen E. Sallan, Brent Shoji, Lewis B. Silverman, Robert J. Soiffer, David P. Steensma, Kimberly Stegmaier, Richard M. Stone, Jerome Tamburini, Aaron R. Thorner, Paul van Hummelen, Martha Wadleigh, Marion Wiesmann, Andrew P. Weng, Jens U. Wuerthner, David A. Williams, Bruce M. Wollison, Andrew A. Lane, Anthony Letai, Monica M. Bertagnolli, Jerome Ritz, Myles Brown, Henry Long, Jon C. Aster, Margaret A. Shipp, James D. Griffin, and David M. Weinstock* *Correspondence: [email protected] http://dx.doi.org/10.1016/j.ccell.2016.06.008


Proceedings of the National Academy of Sciences of the United States of America | 2017

Functional proteogenomics reveals biomarkers and therapeutic targets in lymphomas

Delphine Rolland; Venkatesha Basrur; Yoon Kyung Jeon; Carla McNeil-Schwalm; Damian Fermin; Kevin P. Conlon; Yeqiao Zhou; Samuel Y. Ng; Chih Chiang Tsou; Noah A. Brown; Dafydd G. Thomas; Nathanael G. Bailey; Gilbert S. Omenn; Alexey I. Nesvizhskii; David E. Root; David M. Weinstock; Robert B. Faryabi; Megan S. Lim; Kojo S.J. Elenitoba-Johnson

Significance An important goal in precision oncology is the identification of biomarkers and therapeutic targets. We identified and annotated a compendium of N-glycoproteins from diverse human lymphoid neoplasia, an attractive class of proteins with potential to serve as cancer biomarkers and therapeutic targets. In anaplastic lymphoma kinase-positive (ALK+) anaplastic large cell lymphoma (ALCL), integration of N-glycoproteomics and transcriptome sequencing revealed an underappreciated and targetable ALK-regulated cytokine/receptor signaling network highlighting the utility of functional proteogenomics for discovery of cancer biomarkers and therapeutic targets. Identification of biomarkers and therapeutic targets is a critical goal of precision medicine. N-glycoproteins are a particularly attractive class of proteins that constitute potential cancer biomarkers and therapeutic targets for small molecules, antibodies, and cellular therapies. Using mass spectrometry (MS), we generated a compendium of 1,091 N-glycoproteins (from 40 human primary lymphomas and cell lines). Hierarchical clustering revealed distinct subtype signatures that included several subtype-specific biomarkers. Orthogonal immunological studies in 671 primary lymphoma tissue biopsies and 32 lymphoma-derived cell lines corroborated MS data. In anaplastic lymphoma kinase-positive (ALK+) anaplastic large cell lymphoma (ALCL), integration of N-glycoproteomics and transcriptome sequencing revealed an ALK-regulated cytokine/receptor signaling network, including vulnerabilities corroborated by a genome-wide clustered regularly interspaced short palindromic screen. Functional targeting of IL-31 receptor β, an ALCL-enriched and ALK-regulated N-glycoprotein in this network, abrogated ALK+ALCL growth in vitro and in vivo. Our results highlight the utility of functional proteogenomic approaches for discovery of cancer biomarkers and therapeutic targets.


Blood | 2018

RhoA G17V is sufficient to induce autoimmunity and promotes T-cell lymphomagenesis in mice

Samuel Y. Ng; Leon Brown; Kristen E. Stevenson; Tiffany DeSouza; Abner Louissaint; David M. Weinstock

Patients with angioimmunoblastic T-cell lymphoma (AITL) and other peripheral T-cell lymphomas that harbor features of follicular helper T (TFH) cells have a very poor prognosis. These lymphomas commonly present with paraneoplastic autoimmunity and lymphopenia. RhoA G17V mutation is present in 60% of TFH-like lymphomas, but its role in tumorigenesis is poorly understood. We generated transgenic mice that express RhoA G17V under the control of murine CD4 regulatory elements at levels comparable to a heterozygous mutation (tgRhoA mice). These mice had markedly reduced naive T cells but relatively increased TFH-cell populations. Surprisingly, naive CD4 T cells expressing RhoA G17V were hyperreactive to T-cell receptor stimulation. All tgRhoA mice developed autoimmunity that included a cellular infiltrate within ears and tails that was recapitulated in wild-type (WT) recipients after bone marrow transplantation. Older tgRhoA mice developed elevated serum titers of anti-double-stranded DNA antibodies and renal immune complex deposition. RhoA G17V mice crossed with Tet2fl/fl; Vav-Cre+ mice, which delete Tet2 throughout the hematopoietic compartment, developed T-cell lymphomas that retained histologic and immunophenotypic features of AITL and had transcriptional signatures enriched for mechanistic target of rapamycin (mTOR)-associated genes. Transplanted tumors were responsive to the mTOR inhibitor everolimus, providing a possible strategy for targeting RhoA G17V. Taken together, these data indicate that RhoA G17V contributes to both neoplastic and paraneoplastic phenotypes similar to those observed in patients with TFH lymphomas.


Current Opinion in Hematology | 2016

Chemotherapy-sparing treatment strategies for follicular lymphoma: current options and future directions.

Samuel Y. Ng; Jeremy S. Abramson

Purpose of reviewThe accelerating development of targeted therapy offers the possibility of avoiding the many toxic side-effects of cytotoxic chemotherapy often experienced during treatment of patients with malignancies. As a currently incurable disease that typically follows an indolent course, follicular lymphoma is a disease for which chemotherapy-free treatment may offer substantial benefit. Recent findingsWe review chemotherapy-free treatment regimens, including those targeting cell-surface proteins and intracellular signaling pathways currently in use for the treatment of follicular lymphoma, paying particular attention to the unique toxicity profiles of these agents. Additionally, the safety profiles and efficacy of selected novel-targeted therapies in earlier phase studies, including immunotherapeutics, will be explored. SummaryNovel-targeted therapies are rapidly changing the landscape of follicular lymphoma and decreasing reliance upon traditional chemotherapeutics. Although the toxicities of chemotherapy are well known to clinicians, the unique adverse events associated with novel agents may be less familiar, and requires attention to identification, management, and prophylaxis of toxicity associated with emerging chemotherapy-sparing treatments.


Nature Immunology | 2006

Early hematopoietic lineage restrictions directed by Ikaros.

Toshimi Yoshida; Samuel Y. Ng; Juan Carlos Zúñiga-Pflücker; Katia Georgopoulos


Current Opinion in Immunology | 2007

Ikaros and chromatin regulation in early hematopoiesis.

Samuel Y. Ng; Toshimi Yoshida; Katia Georgopoulos

Collaboration


Dive into the Samuel Y. Ng's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

David M. Dorfman

Brigham and Women's Hospital

View shared research outputs
Top Co-Authors

Avatar

Elizabeth A. Morgan

Brigham and Women's Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge