San-Huang Ke
Duke University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by San-Huang Ke.
Nano Letters | 2008
San-Huang Ke; Weitao Yang; Harold U. Baranger
Quantum interference in coherent transport through single molecular rings may provide a mechanism to control the current in molecular electronics. We investigate its applicability, using a single-particle Green function method combined with ab initio electronic structure calculations. We find that the quantum interference effect (QIE) is strongly dependent on the interaction between molecular pi-states and contact sigma-states. It is masked by sigma tunneling in small molecular rings with Au leads, such as benzene, due to strong pi-sigma hybridization, while it is preserved in large rings, such as [18]annulene, which then could be used to realize quantum interference effect (QIE) transistors.
Physical Review B | 2004
San-Huang Ke; Harold U. Baranger; Weitao Yang
A self-consistent method for calculating electron transport through a molecular device is developed. It is based on density functional theory electronic structure calculations under periodic boundary conditions and implemented in the framework of the nonequilibrium Green function approach. To avoid the substantial computational cost in finding theI-V characteristic of large systems, we also develop an approximate but much more efficient non-self-consistent method. Here the change in effective potential in the device region caused by a bias is approximated by the main features of the voltage drop. As applications, the I-V curves of a carbon chain and an aluminum chain sandwiched between two aluminum electrodes are calculated—two systems in which the voltage drops very differently. By comparing to the self-consistent results, we show that this non-self-consistent approach works well and can give quantitatively good results.
Physical Review B | 2005
Stephanie A. Getty; Chaiwat Engtrakul; Lixin Wang; Rui Liu; San-Huang Ke; Harold U. Baranger; Weitao Yang; Michael S. Fuhrer; Lawrence R. Sita
Here we describe the design, single-molecule transport measurements, and theoretical modeling of a ferrocene-based organometallic molecular wire, whose bias-dependent conductance shows a clear Lorentzian form with magnitude exceeding 70% of the conductance quantum
Journal of Chemical Physics | 2005
San-Huang Ke; Harold U. Baranger; Weitao Yang
{G}_{0}
Journal of Chemical Physics | 2006
Rui Liu; San-Huang Ke; Weitao Yang; Harold U. Baranger
. We attribute this unprecedented level of single-molecule conductance to a manifestation of the low-lying molecular resonance and extended orbital network long predicted for a conjugated organic system. A similar-in-length, all-organic conjugated phenylethynyl oligomer molecular framework shows much lower conductance.
Journal of Chemical Physics | 2007
San-Huang Ke; Harold U. Baranger; Weitao Yang
Using benzene sandwiched between two Au leads as a model system, we investigate from first principles the change in molecular conductance caused by different atomic structures around the metal-molecule contact. Our motivation is the variable situations that may arise in break junction experiments; our approach is a combined density functional theory and Green function technique. We focus on effects caused by (1) the presence of an additional Au atom at the contact and (2) possible changes in the molecule-lead separation. The effects of contact atomic relaxation and two different lead orientations are fully considered. We find that the presence of an additional Au atom at each of the two contacts will increase the equilibrium conductance by up to two orders of magnitude regardless of either the lead orientation or different group-VI anchoring atoms. This is due to a resonance peak near the Fermi energy from the lowest energy unoccupied molecular orbital. In the nonequilibrium properties, the resonance peak manifests itself in a negative differential conductance. We find that the dependence of the equilibrium conductance on the molecule-lead separation can be quite subtle: either very weak or very strong depending on the separation regime.
Nano Letters | 2009
San-Huang Ke; Weitao Yang; Stefano Curtarolo; Harold U. Baranger
We study the rectification of current through a single molecule with an intrinsic spatial asymmetry. The molecule contains a cobaltocene moiety in order to take advantage of its relatively localized and high-energy d states. A rectifier with large voltage range, high current, and low threshold can be realized. The evolution of molecular orbitals under both forward and reverse biases is captured in a self-consistent nonequilibrium Green function plus density functional theory description. Our calculations demonstrate the plausibility of making excellent molecular diodes by using metallocenes, pointing to a fruitful class of molecules.
Journal of Chemical Physics | 2005
San-Huang Ke; Harold U. Baranger; Weitao Yang
The effect of the exchange-correlation potential in ab initio electron transport calculations is investigated by constructing optimized effective potentials using different energy functionals or the electron density from second-order perturbation theory. The authors calculate electron transmission through two atomic chain systems, one with charge transfer and one without. Dramatic effects are caused by two factors: changes in the energy gap and the self-interaction error. The error in conductance caused by the former is about one order of magnitude while that caused by the latter ranges from several times to two orders of magnitude, depending on the coupling strength and charge transfer. The implications for accurate quantum transport calculations are discussed.
Journal of Chemical Physics | 2005
Rui Liu; San-Huang Ke; Harold U. Baranger; Weitao Yang
Molecular nanojunctions may support efficient thermoelectric conversion through enhanced thermopower. Recently, this quantity has been measured for several conjugated molecular nanojunctions with gold electrodes. Considering the wide variety of possible metal/molecule systems-almost none of which have been studied-it seems highly desirable to be able to calculate the thermopower of junctions with reasonable accuracy and high efficiency. To address this task, we demonstrate an effective approach based on the single particle green function (SPGF) method combined with density functional theory (DFT) using B3LYP and PBE0 energy functionals. Systematic good agreement between theory and experiment is obtained; indeed, much better agreement is found here than for comparable calculations of the conductance.
Journal of Chemical Physics | 2007
Rui Liu; San-Huang Ke; Weitao Yang; Harold U. Baranger
Bridging the difference in atomic structure between experiments and theoretical calculations and exploring quantum confinement effects in thin electrodes (leads) are both important issues in molecular electronics. To address these issues, we report here, by using Au-benzenedithiol-Au as a model system, systematic investigations of different models for the leads and the lead-molecule contacts: leads with different cross sections, leads consisting of infinite surfaces, and surface leads with a local nanowire or atomic chain of different lengths. The method adopted is a nonequilibrium Greens-function approach combined with density-functional theory calculations for the electronic structure and transport, in which the leads and molecule are treated on the same footing. It is shown that leads with a small cross section will lead to large oscillations in the transmission function T(E), which depend significantly on the lead structure (orientation) because of quantum waveguide effects. This oscillation slowly decays as the lead width increases, with the average approaching the limit given by infinite surface leads. Local nanowire structures around the contacts induce moderate fluctuations in T(E), while a Au atomic chain (including a single Au apex atom) at each contact leads to a significant conductance resonance.