Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Sana Ferjani is active.

Publication


Featured researches published by Sana Ferjani.


International Journal of Food Microbiology | 2016

High prevalence of extended-spectrum and plasmidic AmpC beta-lactamase-producing Escherichia coli from poultry in Tunisia

Elaa Maamar; Samia Hammami; Carla Andrea Alonso; Nouha Dakhli; Mohamed Salah Abbassi; Sana Ferjani; Zaineb Hamzaoui; Mabrouka Saidani; Carmen Torres; Ilhem Boutiba-Ben Boubaker

This study was conducted to detect extended spectrum beta-lactamases (ESBLs) and plasmidic AmpC beta-lactamase (pAmpC-BL)-producing Escherichia coli isolates in industrial poultry samples were collected from healthy chickens of the three farms. Samples were inoculated onto desoxycholate-lactose-agar plates supplemented with cefotaxime (2mg/L). E. coli was identified by biochemical and molecular methods and antibiotic susceptibility testing by the disk diffusion method. Genes encoding ESBLs and pAmpC-BL were detected by PCR and sequencing. Phylogenetic groups were determined by triplex PCR. The molecular typing of strains was done by pulsed field gel electrophoresis (PFGE) and Multilocus Sequence Typing (MLST) in those isolates showing different PFGE patterns. Cefotaxime-resistant E. coli isolates were recovered in 48 of 137 fecal samples (35%), and one isolate/sample was further studied. The following beta-lactamase genes were detected: blaCTX-M-1 (29 isolates, isolated in all three farms), blaCTX-M-15 (5 isolates, confined in farm II), blaCTX-M-14 and blaCMY-2 (one isolate and 13 isolates, respectively, in farm III). The 48 cefotaxime-resistant isolates were distributed into phylogroups: B1 (n=21), A (n=15) and D (n=12). PFGE analysis revealed 19 unrelated patterns: 15 different profiles among ESBL-positive strains and 4 among the CMY-2-positive isolates. The following sequence types-associated phylogroups were detected: a) CTX-M-1-positive strains: lineages ST542-B1, ST212-B1, ST58-B1, ST155-B1 and ST349-D; b) CTX-M-15-positive strain: lineage ST405-D; c) CTX-M-14-positive strain: lineage ST1056-B1; d) CMY-2-positive strains: lineages ST117-D, ST2197-A, and ST155-B1. Healthy chickens constitute an important reservoir of ESBL- and pAmpC-BL-producing E. coli isolates that potentially could be transmitted to humans via the food chain or by direct contact.


Frontiers in Cellular and Infection Microbiology | 2015

Occurrence of blaCTX-M-1,qnrB1 and virulence genes in avian ESBL-producing Escherichia coli isolates from Tunisia

Hajer Kilani; Mohamed Salah Abbassi; Sana Ferjani; Riadh Mansouri; Senda Sghaier; Rakia Ben Salem; Imen Jaouani; Gtari Douja; Sana Brahim; Salah Hammami; Noureddine Ben Chehida; Ilhem Boutiba-Ben Boubaker

Avian ESBL-producing Escherichia coli isolates have been increasingly reported worldwide. Animal to human dissemination, via food chain or direct contact, of these resistant bacteria has been reported. In Tunisia, little is known about avian ESBL- producing E. coli and further studies are needed. Seventeen ESBL-producing Escherichia coli isolates from poultry feces from two farms (Farm 1 and farm 2) in the North of Tunisia have been used in this study. Eleven of these isolates (from farm 1) have the same resistance profile to nalidixic acid, sulfonamides, streptomycin, tetracycline, and norfloxacine (intermediately resistant). Out of the six isolates recovered from farm 2, only one was co-resistant to tetracycline. All isolates, except one, harbored blaCTX-M-1 gene, and one strain co-harbored the blaTEM-1 gene. The genes tetA and tetB were carried, respectively, by 11 and 1 amongst the 12 tetracycline-resistant isolates. Sulfonamides resistance was encoded by sul1, sul2, and sul3 genes in 3, 17, and 5 isolates, respectively. The qnrB1 was detected in nine strains, one of which co-harbored qnrS1 gene. The search for the class 1 and 2 integrons by PCR showed that in farm 1, class 1 and 2 integrons were found in one and ten isolates, respectively. In farm 2, class 1 integron was found in only one isolate, class 2 was not detected. Only one gene cassette arrangement was demonstrated in the variable regions (VR) of the 10 int2-positive isolates: dfrA1- sat2-aadA1. The size of the VR of the class 1 integron was approximately 250 bp in one int1-positive isolate, whereas in the second isolate, no amplification was observed. All isolates of farm 1 belong to the phylogroup A (sub-group A0). However, different types of phylogroups in farm 2 were detected. Each of the phylogroups A1, B22, B23 was detected in one strain, while the D2 phylogroup was found in 3 isolates. The virulence genes iutA, fimH, and traT were detected in 3, 7, and 3 isolates, respectively. Two types of gene combination were detected: iutA+fimH+traT in 3 isolates and iutA+fimH in one isolate. The isolates recovered in farm 1 showed the same profile of PFGE macro-restriction, while isolates of farm 2 presented unrelated PFGE patterns. We conclude that these avian ESBL-producing E. coli isolates show homo- and heterogenic genetic background and that plasmids harboring ESBL genes could be involved in the dissemination of this resistance phenotype.


Frontiers in Microbiology | 2016

High Prevalence of Gut Microbiota Colonization with Broad-Spectrum Cephalosporin Resistant Enterobacteriaceae in a Tunisian Intensive Care Unit.

Elaa Maamar; Sana Ferjani; Ali Jendoubi; Samia Hammami; Zaineb Hamzaoui; Laure Mayonnove-Coulange; Mabrouka Saidani; Aouatef Kammoun; Amel Rehaiem; Salma Ghedira; Mohamed Houissa; Ilhem Boutiba-Ben Boubaker; Amine Slim; Veronique Dubois

Healthcare-associated infections due to cefotaxime-resistant (CTX-R) Enterobacteriaceae have become a major public health threat, especially in intensive care units (ICUs). Often acquired nosocomially, CTX-R Enterobacteriaceae can be introduced initially by patients at admission. This study aimed to determine the prevalence and genetic characteristics of CTX-R Enterobacteriaceae-intestinal carriage in ICU patients, to evaluate the rate of acquisition of these organisms during hospitalization, and to explore some of the associated risk factors for both carriage and acquisition. Between December 2014 and February 2015, the 63 patients admitted in the ICU of Charles Nicolle hospital were screened for rectal CTX-R Enterobacteriaceae colonization at admission and once weekly thereafter to identify acquisition. CTX-R Enterobacteriaceae fecal carriage rate was 20.63% (13/63) at admission. Among the 50 non-carriers, 35 were resampled during their hospitalization and the acquisition rate was 42.85% (15/35). Overall, 35 CTX-R Enterobacteriaceae isolates were collected from 28 patients (25 Klebsiella pneumoniae, seven Escherichia coli, and three Enterobacter cloacae strains). Seven patients were simultaneously colonized with two CTX-R Enterobacteriaceae isolates. CTX-M-15 was detected in most of the CTX-R Enterobacteriaceae isolates (30/35, 88.23%). Three strains co-produced CMY-4 and 22 strains were carbapenem-resistant and co-produced a carbapenemase [OXA-48 (n = 13) or NDM-1 (n = 6)]. Molecular typing of K. pneumoniae strains, revealed eight Pulsed field gel electrophoresis (PFGE) patterns and four sequence types (ST) [ST101, ST147, ST429, and ST336]. However, E. coli isolates were genetically unrelated and belonged to A (n = 2), B1 (n = 2) and B2 (n = 3) phylogenetic groups and to ST131 (two strains), ST572 (two strains), ST615 (one strain) and ST617 (one strain). Five colonized patients were infected by CTX-R Enterobacteriaceae (four with the same strain identified from their rectal swab and one with a different strain). Whether imported or acquired during the stay in the ICU, colonization by CTX-R Enterobacteriaceae is a major risk factor for the occurrence of serious nosocomial infections. Their systematic screening in fecal carriage is mandatory to prevent the spread of these multidrug resistant bacteria.


International Journal of Food Microbiology | 2018

Emergence of plasmid-mediated colistin-resistance in CMY-2-producing Escherichia coli of lineage ST2197 in a Tunisian poultry farm

Elaa Maamar; Carla Andrea Alonso; Zaineb Hamzaoui; Nouha Dakhli; Mohamed Salah Abbassi; Sana Ferjani; Mabrouka Saidani; Ilhem Boutiba-Ben Boubaker; Carmen Torres

Our study aimed to investigate colistin resistance and the mechanisms involved in a collection of 35 extended-spectrum beta-lactamase (ESBL) and 13 CMY-2-producing E. coli strains which were previously recovered from chicken gut microbiota in Tunisia, as well as to determine the genetic location of mcr genes. Forty-eight ESBL and CMY-2-producing E. coli strains were obtained from 137 fecal samples of healthy chickens during 2013. These strains were tested for colistin resistance by the broth microdilution method, and screened for mcr-1 and mcr-2 genes by PCR. Two of these strains were colistin-resistant (MIC = 8 mg/L). Both harbored the mcr-1 gene, were CMY-2 producers, and were additionally resistant to tetracycline, ciprofloxacin, chloramphenicol, gentamicin, tobramycin and trimethoprim-sulfamethoxazole. They shared phylogroup A, the same pulsed-field gel electrophoresis (PFGE)-pattern, and were typed as ST2197. In both strains, ISApl1 and pap2 were detected upstream and downstream of mcr-1 gene, respectively. The analysis of the two mcr-1-positive strains and their transconjugants by PCR-based replicon typing and S1-PFGE, demonstrated that mcr-1 gene is linked to an IncP plasmid (~242 kb), and blaCMY-2 to an IncI1 plasmid (97 kb). The occurrence of E. coli harboring mcr-1 gene among intestinal microbiota in poultry and its location on a conjugative plasmid could represent a risk for public health. The evolution of this type of resistant microorganisms should be evaluated in the future.


International Journal of Antimicrobial Agents | 2018

Escherichia coli colonizing healthy children in Tunisia: High prevalence of extra-intestinal pathovar and occurrence of non-extended-spectrum-β-lactamase-producing ST131 clone

Sana Ferjani; Mabrouka Saidani; Elaa Maamar; Sarra Harbaoui; Zeineb Hamzaoui; Houda Hosni; Faouzi Slim Amine; Ilhem Boutiba-Ben Boubaker

This study was performed to investigate the distribution of antimicrobial resistance genes and extra-intestinal virulence determinants in a collection of 98 Escherichia coli strains isolated from rectal swabs of healthy children. Forty-six isolated strains were resistant to at least one of the tested antibiotics (usually active against enterobacteria). They were mainly resistant to ampicillin and ticarcillin (42.97%), tetracyclin (26.5%), and trimethoprim/sulfamethoxazole (18.4%). No resistance to the third generation of cephalosporins, carbapenems, aminoglycosides and colistin was found. Resistance to penicillins was encoded by blaTEM-1 (n=34) and blaSHV-1 genes (n=4). Tetracyclin resistance was encoded by tetB (n=12), tetA (n= 5), and tetC (n=1) genes. Amongst resistant quinolones isolated (n=5), chromosomal mutations in gyrA and parC genes were detected in four isolates and qnrS1 gene in two strains. Nine plasmid replicon types were detected; IncFIB (n=36) and IncI1 (n=7) were the most frequent ones. Isolates frequently belonged to phylogenetic groups A (51.1%) and D (27.5%). Extra-intestinal pathovar (n=38) occurred mainly in B2 phylogroup (P=0.0002). Amongst them, two isolates (non-extended-spectrum-β-lactamase (ESBL)-producers) belonged to the pandemic clone ST131. A significant distribution of virulence determinants and pathogenicity island marker was observed within strains belonging to B2 and D phylogroups. Interestingly, our results showed that ExPEC strains, including ST131 pandemic clone, are present within fecal isolates in healthy children. These findings highlight the importance of intestinal microbiota as a reservoir for virulent and resistant strains. Thus, reinforcing hand hygiene and antibiotic rational use is imperative to avoid the diffusion of these pathogens in the community.


International Journal of Antimicrobial Agents | 2018

Role of association of OmpK35 and OmpK36 alteration and bla ESBL and/or bla AmpC genes in conferring carbapenem resistance among non-carbapenemase-producing Klebsiella pneumoniae

Zaineb Hamzaoui; Alain A. Ocampo-Sosa; Marta Fernandez Martinez; Sarrah Landolsi; Sana Ferjani; Elaa Maamar; Mabrouka Saidani; Amine Slim; Luis Martínez-Martínez; Ilhem Boutiba-Ben Boubaker

In Klebsiella pneumoniae, loss of the two major outer membrane porins (OMPs) OmpK35 and OmpK36 confers resistance to carbapenems in strains producing extended-spectrum β-lactamases (ESBLs) or plasmid-mediated AmpC-type β-lactamases. This study investigated mechanisms responsible for carbapenem resistance in non-carbapenemase-producing K. pneumoniae (NCPK). All carbapenem-resistant Enterobacteriaceae (CRE) at Charles Nicolle Hospital (Tunis, Tunisia) were collected over a 6-year period (2010-2015). Among the 334 CRE strains collected, 44 (13.2%) were NCPK. MIC ranges for ertapenem, imipenem and meropenem were 1 to >32 mg/L, 0.125-8 mg/L and 0.125-32 mg/L, respectively. All strains showed a multidrug-resistant (MDR) phenotype and were negative for carbapenemase activity. None of the carbapenemase genes searched for were found. ESBL production was confirmed in all isolates except one [CTX-M-15 (n = 39) and SHV-5 (n = 4)]. Three isolates produce DHA-1 (associated with CTX-M-15 in two strains). Molecular fingerprints grouped the 44 NCPK isolates into seven clusters. In seven representative strains of these clusters, SDS-PAGE results showed that four isolates lacked the OmpK35 porin, one isolate lacked OmpK36 and two isolates lacked both OmpK35 and OmpK36. Sequencing of the corresponding porin genes showed amino acid insertions and deletions leading to early termination of translation, point mutations in the promoter region, or insertion sequences disrupting the gene coding sequence. Loss or deficiency of OMPs, coupled with ESBL and/or AmpC production, plays an important role in conferring carbapenem resistance in K. pneumoniae. Dissemination of these MDR bacteria in our hospital may create serious therapeutic problems in the future.


Acta Medica International | 2016

Molecular Characterization of Extended Spectrum β-Lactamases, Ampccephalosporinases and Carbapenemases in Klebsiellapneumoniae Causing Bacteremia at Charles Nicolle Hospital of Tunisia.

Elaa Maamar; Samia Hammami; Sana Ferjani; Zaineb Hamzaoui; Asma Jlizi; Mabrouka Saidani; A. Slim; I Boutiba-Ben Boubaker

Purpose of the Study: This study was conducted to detect and characterize the genes encoding extended spectrum β-lactamases and associated β-lactamases (carbapenemases and Ambler Class C β-lactamases). Patients and Methods: In 2011, out of the 65 non-duplicative Klebsiellapneumoniae collected from blood culture at Charles Nicolle hospital of Tunisia, 36 were resistant to 3rd generation cephalosporin. Results: All strains showed a double disk synergy test positive. They were mainly isolated in intensive care unit (31%). They were frequently resistant to most antibiotics tested, except colistin and tigecyclin. Five isolates (13%) showed reduced susceptibility to carbapenems. blaCTX-M-15 was harbored by 35 strains and blaSHV-12 by one. blaCTX-M-15 were associated with blaTEM-1 (n=21), blaOXA-48 and blaCMY-2 (n=1) and blaOXA-48and blaTEM-1 (n=4). The conjugation wassuccessfulfor4/5 strains (3 harboring blaCTX-M-15 and one blaSHV-12). The plasmids carrying the blaCTX-M-15 were assigned to IncN or IncL/M only for 2 strains. The remaining blaCTX-M-15-carrying plasmid was negative for all of the replicons tested as well as the blaSHV-12-carrying plasmid. Conclusion: Our results confirm the spread of CTX-M-15 in our institution. To our knowledge, this is the first report of K. pneumoniae coproducing CTX-M-15, CMY-2 and OXA-48. The implementation of preventive measures against the spread of these multiresistant bacteria is needed.


Folia Microbiologica | 2014

Multidrug resistance and high virulence genotype in uropathogenic Escherichia coli due to diffusion of ST131 clonal group producing CTX-M-15: an emerging problem in a Tunisian hospital

Sana Ferjani; Mabrouka Saidani; Samir Ennigrou; Mohamed Hsairi; Amine Slim; Ilhem Boutiba-Ben Boubaker


Medecine Et Maladies Infectieuses | 2015

A comparative study of antimicrobial resistance rates and phylogenetic groups of community-acquired versus hospital-acquired invasive Escherichia coli

Sana Ferjani; Mabrouka Saidani; F.S. Amine; I. Boutiba Ben Boubaker


Diagnostic Microbiology and Infectious Disease | 2017

Community fecal carriage of broad-spectrum cephalosporin-resistant Escherichia coli in Tunisian children

Sana Ferjani; Mabrouka Saidani; Zeineb Hamzaoui; Carla Andrea Alonso; Carmen Torres; Elaa Maamar; Amine Slim; Ben Boubaker Ilhem Boutiba

Collaboration


Dive into the Sana Ferjani's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge