Sanae Sakai
Japan Agency for Marine-Earth Science and Technology
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Sanae Sakai.
Applied and Environmental Microbiology | 2007
Sanae Sakai; Hiroyuki Imachi; Yuji Sekiguchi; Akiyoshi Ohashi; Hideki Harada; Yoichi Kamagata
ABSTRACT Despite the fact that rice paddy fields (RPFs) are contributing 10 to 25% of global methane emissions, the organisms responsible for methane production in RPFs have remained uncultivated and thus uncharacterized. Here we report the isolation of a methanogen (strain SANAE) belonging to an abundant and ubiquitous group of methanogens called rice cluster I (RC-I) previously identified as an ecologically important microbial component via culture-independent analyses. To enrich the RC-I methanogens from rice paddy samples, we attempted to mimic the in situ conditions of RC-I on the basis of the idea that methanogens in such ecosystems should thrive by receiving low concentrations of substrate (H2) continuously provided by heterotrophic H2-producing bacteria. For this purpose, we developed a coculture method using an indirect substrate (propionate) in defined medium and a propionate-oxidizing, H2-producing syntroph, Syntrophobacter fumaroxidans, as the H2 supplier. By doing so, we significantly enriched the RC-I methanogens and eventually obtained a methanogen within the RC-I group in pure culture. This is the first report on the isolation of a methanogen within RC-I.
International Journal of Systematic and Evolutionary Microbiology | 2011
Yuto Yashiro; Sanae Sakai; Masayuki Ehara; Masayuki Miyazaki; Takashi Yamaguchi; Hiroyuki Imachi
A novel methane-producing archaeon, strain SMSP(T), was isolated from an anaerobic, propionate-degrading enrichment culture that was originally obtained from granular sludge in a mesophilic upflow anaerobic sludge blanket (UASB) reactor used to treat a beer brewery effluent. Cells were non-motile, blunt-ended, straight rods, 1.0-2.6 μm long by 0.5 μm wide; cells were sometimes up to 7 μm long. Asymmetrical cell division was observed in rod-shaped cells. Coccoid cells (0.5-1.0 μm in diameter) were also observed in mid- to late-exponential phase cultures. Growth was observed between 10 and 40 °C (optimum, 30-33 °C) and pH 7.0 and 7.6 (optimum, pH 7.4). The G+C content of the genomic DNA was 56.2 mol%. The strain utilized formate and hydrogen for growth and methane production. Based on comparative sequence analyses of the 16S rRNA and mcrA (encoding the alpha subunit of methyl-coenzyme M reductase, a key enzyme in the methane-producing pathway) genes, strain SMSP(T) was affiliated with group E1/E2 within the order Methanomicrobiales. The closest relative based on both 16S rRNA and mcrA gene sequences was Methanoregula boonei 6A8(T) (96.3 % 16S rRNA gene sequence similarity, 85.4 % deduced McrA amino acid sequence similarity). The percentage of 16S rRNA gene sequence similarity indicates that strain SMSP(T) and Methanoregula boonei 6A8(T) represent different species within the same genus. This is supported by our findings of shared phenotypic properties, including cell morphology and growth temperature range, and phenotypic differences in substrate usage and pH range. Based on these genetic and phenotypic properties, we propose that strain SMSP(T) represents a novel species of the genus Methanoregula, for which we propose the name Methanoregula formicica sp. nov., with the type strain SMSP(T) (=NBRC 105244(T) =DSM 22288(T)).
International Journal of Systematic and Evolutionary Microbiology | 2010
Sanae Sakai; Ralf Conrad; Werner Liesack; Hiroyuki Imachi
A novel hydrogenotrophic methanogen, designated strain MRE50(T), was isolated from a methanogenic consortium, which was originally established from an Italian rice field soil. Cells were non-motile rods, 1.3-2.8 μm long and 0.4-0.7 μm wide. Coccoid cells were also observed in cultures at the late-exponential phase of growth. Strain MRE50(T) grew at 37-55 °C (optimally at 45 °C), at pH 6-7.8 (optimally at pH 7.0) and in the presence of 0-20 g NaCl l(-1). The isolate utilized H(2)/CO(2) and formate for growth and methane production. Phylogenetic analyses of the 16S rRNA gene and the methanogen-specific marker gene mcrA showed that strain MRE50(T) is affiliated with the order Methanocellales, previously known as uncultured archaeal group Rice Cluster I. Based on both 16S rRNA gene and mcrA gene sequences, strain MRE50(T) was related most closely to Methanocella paludicola SANAE(T). Levels of sequence similarity were 92.5 and 86.1 %, respectively, indicating that strains MRE50(T) and Methanocella paludicola SANAE(T) represent different species within the genus Methanocella. In addition, although these strains shared phenotypic properties including cell morphology and substrate utilization, they differed with respect to susceptibility to antibiotics, and temperature and NaCl ranges for growth. Given the phenotypic differences and the distinct phylogenetic placement of the new isolate relative to the type species of the genus Methanocella, strain MRE50(T) is considered to represent a novel species of the genus Methanocella, for which the name Methanocella arvoryzae sp. nov. is proposed. The type strain is MRE50(T) (=NBRC 105507(T) =DSM 22066(T)).
International Journal of Systematic and Evolutionary Microbiology | 2012
Sanae Sakai; Masayuki Ehara; I-Cheng Tseng; Takashi Yamaguchi; Suzanna L. Bräuer; Hinsby Cadillo-Quiroz; Stephen H. Zinder; Hiroyuki Imachi
A novel mesophilic, hydrogenotrophic methanogen, designated strain TNR(T), was isolated from an anaerobic, propionate-degradation enrichment culture that was originally established from a rice field soil sample from Taiwan. Cells were non-motile rods, 2.0-6.5 µm long by 0.3 µm wide. Filamentous (up to about 100 µm) and coccoid (about 1 µm in diameter) cells were also observed in cultures in the late exponential phase of growth. Strain TNR(T) grew at 20-40 °C (optimally at 37 °C), at pH 6.5-7.4 (optimally at pH 7.0) and in the presence of 0-25 g NaCl l(-1) (optimally at 0 g NaCl l(-1)). The strain utilized H(2)/CO(2) and formate for growth and produced methane. The G+C content of the genomic DNA was 56.4 mol%. Based on sequences of both the 16S rRNA gene and the methanogen-specific marker gene mcrA, strain TNR(T) was related most closely to Methanolinea tarda NOBI-1(T); levels of sequence similarities were 94.8 and 86.4 %, respectively. The 16S rRNA gene sequence similarity indicates that strain TNR(T) and M. tarda NOBI-1(T) represent different species within the same genus. This is supported by shared phenotypic properties, including substrate usage and cell morphology, and differences in growth temperature. Based on these genetic and phenotypic properties, strain TNR(T) is considered to represent a novel species of the genus Methanolinea, for which the name Methanolinea mesophila sp. nov. is proposed; the type strain is TNR(T) ( = NBRC 105659(T) = DSM 23604(T)). In addition, we also suggest family status for the E1/E2 group within the order Methanomicrobiales, for which the name Methanoregulaceae fam. nov. is proposed; the type genus of family is Methanoregula.
Applied and Environmental Microbiology | 2009
Sanae Sakai; Hiroyuki Imachi; Yuji Sekiguchi; I-Cheng Tseng; Akiyoshi Ohashi; Hideki Harada; Yoichi Kamagata
ABSTRACT We previously reported the isolation of novel methanogens by using a new cultivation method, referred to as the coculture method. Here, we extended our coculture method to various anaerobic environmental samples. As a result, we successfully cultivated some uncharacterized methanogens in coculture enrichments and eventually isolated a new methanogen, within the order Methanomicrobiales.
PLOS ONE | 2011
Sanae Sakai; Yoshihiro Takaki; Shigeru Shimamura; Mitsuo Sekine; Takahisa Tajima; Hiroki Kosugi; Natsuko Ichikawa; Eiji Tasumi; Aiko T. Hiraki; Ai Shimizu; Yumiko Kato; Rika Nishiko; Koji Mori; Nobuyuki Fujita; Hiroyuki Imachi; Ken Takai
We report complete genome sequence of a mesophilic hydrogenotrophic methanogen Methanocella paludicola, the first cultured representative of the order Methanocellales once recognized as an uncultured key archaeal group for methane emission in rice fields. The genome sequence of M. paludicola consists of a single circular chromosome of 2,957,635 bp containing 3004 protein-coding sequences (CDS). Genes for most of the functions known in the methanogenic archaea were identified, e.g. a full complement of hydrogenases and methanogenesis enzymes. The mixotrophic growth of M. paludicola was clarified by the genomic characterization and re-examined by the subsequent growth experiments. Comparative genome analysis with the previously reported genome sequence of RC-IMRE50, which was metagenomically reconstructed, demonstrated that about 70% of M. paludicola CDSs were genetically related with RC-IMRE50 CDSs. These CDSs included the genes involved in hydrogenotrophic methane production, incomplete TCA cycle, assimilatory sulfate reduction and so on. However, the genetic components for the carbon and nitrogen fixation and antioxidant system were different between the two Methanocellales genomes. The difference is likely associated with the physiological variability between M. paludicola and RC-IMRE50, further suggesting the genomic and physiological diversity of the Methanocellales methanogens. Comparative genome analysis among the previously determined methanogen genomes points to the genome-wide relatedness of the Methanocellales methanogens to the orders Methanosarcinales and Methanomicrobiales methanogens in terms of the genetic repertoire. Meanwhile, the unique evolutionary history of the Methanocellales methanogens is also traced in an aspect by the comparative genome analysis among the methanogens.
International Journal of Systematic and Evolutionary Microbiology | 2009
Hiroyuki Imachi; Sanae Sakai; Hiroyuki Nagai; Takashi Yamaguchi; Ken Takai
A novel methane-producing archaeon, designated strain HASU(T), was isolated from a lotus field. Cells were Gram-negative, non-motile, irregular cocci, 2-3 mum in diameter, and occurred singly. Growth was observed at 15-40 degrees C (optimum, 37 degrees C) and pH 6.5-7.5 (optimum, pH 7.0). The G+C content of the genomic DNA was 60.9 mol%. Strain HASU(T) utilized ethanol, 1-propanol, 1-butanol, hydrogen and formate for growth and methane production. It converted ethanol to methane and acetate. Based on comparative 16S rRNA gene sequence analysis, strain HASU(T) was shown to be affiliated with the genus Methanofollis. It was related most closely to the type strain of Methanofollis liminatans (96.1 % 16S rRNA gene sequence similarity). Based on phylogenetic analysis and phenotypic characteristics, strain HASU(T) is considered to represent a novel species of the genus Methanofollis, for which the name Methanofollis ethanolicus sp. nov. is proposed. The type strain is HASU(T) (=NBRC 104120(T)=JCM 15103(T)=DSM 21041(T)).
International Journal of Systematic and Evolutionary Microbiology | 2014
Hiroyuki Imachi; Sanae Sakai; Julius S. Lipp; Masayuki Miyazaki; Yumi Saito; Yuko Yamanaka; Kai-Uwe Hinrichs; Fumio Inagaki; Ken Takai
A novel, anaerobic filamentous bacterium, strain MO-CFX1(T), was isolated from a methanogenic community, which was originally established from subseafloor sediments collected from off the Shimokita Peninsula, Japan. Cells were non-spore-forming, non-motile, Gram-stain-negative and filamentous. The filaments were longer than 10 µm and 130-150 nm in width. Growth of the strain was observed at 10-37 °C (optimum 25-30 °C), at pH 5.5-8.5 (optimum pH 7.0) and in 0-50 g NaCl l(-1) (optimum 15 g NaCl l(-1)). The strain was able to grow with a number of carbohydrates in the presence of yeast extract. The major cellular fatty acids were monounsaturated C18 : 1ω9, C16 : 1ω7 and saturated C18 : 0 and C16 : 0. The intact polar lipids of the strain were dominated by diacylglyceride and sphingolipid core lipid structures with monoglycosidic, mixed phosphomonoglycosidic and fatty-acid-modified monoglycosidic polar head groups. The G+C content of the genomic DNA was 52.4 mol%. Based on the comparative 16S rRNA gene sequence analysis, strain MO-CFX1(T) was affiliated with the class Anaerolineae within the phylum Chloroflexi and was most closely related to Leptolinea tardivitalis YMTK-2(T) (sequence identity of 91.0 %). Based on phenotypic and genetic properties of the novel isolate, we propose a novel species representing a new genus Pelolinea submarina gen. nov., sp. nov., for strain MO-CFX1(T) ( = JCM 17238(T), = KCTC 5975(T)). This is the first formal description, to our knowledge, of an isolate of the phylum Chloroflexi from the deep-sea sedimentary environment.
International Journal of Systematic and Evolutionary Microbiology | 2008
Hiroyuki Imachi; Sanae Sakai; Hisako Hirayama; Satoshi Nakagawa; Takuro Nunoura; Ken Takai; Koki Horikoshi
A novel thermophilic, anaerobic bacterium, strain RASEN(T), was isolated from a deep-sea hydrothermal vent chimney sample collected in the Iheya North field, Okinawa Trough, Japan, at a water depth of 982 m. The cells were motile, Gram-negative and helical with hooked ends, 0.23-0.28x15-27 microm in size with an approximate wavelength of 1.1-1.5 microm. Growth of the strain was observed at 37-60 degrees C (optimum 50 degrees C), in 2.5-3.5 % (w/v) NaCl (optimum 2.5-3 % NaCl) and at pH 6.0-7.5 (optimum pH 7.0). The strain grew on yeast extract only of the substrates examined in this study. The G+C content of the genomic DNA was 27.1 mol%. Major fatty acids for the strain were C(16 : 0), C(18 : 1)(Delta9) trans, C(18 : 0) and C(18 : 1)(Delta9) cis. Based on comparative 16S rRNA gene sequence analysis, strain RASEN(T) formed a deeply branching lineage within the phylum Spirochaetes and had only low levels of sequence similarity with other species of the phylum (range of similarity 72.1-80.6 %). Hence, we propose the name Exilispira thermophila gen. nov., sp. nov. The type strain of Exilispira thermophila is strain RASEN(T) (=JCM 14728(T) =NBRC 103205(T) =KCTC 5595(T)).
Frontiers in Microbiology | 2013
Yoko Ohtomo; Akira Ijiri; Yojiro Ikegawa; Masazumi Tsutsumi; Hiroyuki Imachi; Go-Ichiro Uramoto; Tatsuhiko Hoshino; Yuki Morono; Sanae Sakai; Yumi Saito; Wataru Tanikawa; Takehiro Hirose; Fumio Inagaki
Geological CO2 sequestration in unmineable subsurface oil/gas fields and coal formations has been proposed as a means of reducing anthropogenic greenhouse gasses in the atmosphere. However, the feasibility of injecting CO2 into subsurface depends upon a variety of geological and economic conditions, and the ecological consequences are largely unpredictable. In this study, we developed a new flow-through-type reactor system to examine potential geophysical, geochemical and microbiological impacts associated with CO2 injection by simulating in-situ pressure (0–100 MPa) and temperature (0–70°C) conditions. Using the reactor system, anaerobic artificial fluid and CO2 (flow rate: 0.002 and 0.00001 ml/min, respectively) were continuously supplemented into a column comprised of bituminous coal and sand under a pore pressure of 40 MPa (confined pressure: 41 MPa) at 40°C for 56 days. 16S rRNA gene analysis of the bacterial components showed distinct spatial separation of the predominant taxa in the coal and sand over the course of the experiment. Cultivation experiments using sub-sampled fluids revealed that some microbes survived, or were metabolically active, under CO2-rich conditions. However, no methanogens were activated during the experiment, even though hydrogenotrophic and methylotrophic methanogens were obtained from conventional batch-type cultivation at 20°C. During the reactor experiment, the acetate and methanol concentration in the fluids increased while the δ13Cacetate, H2 and CO2 concentrations decreased, indicating the occurrence of homo-acetogenesis. 16S rRNA genes of homo-acetogenic spore-forming bacteria related to the genus Sporomusa were consistently detected from the sandstone after the reactor experiment. Our results suggest that the injection of CO2 into a natural coal-sand formation preferentially stimulates homo-acetogenesis rather than methanogenesis, and that this process is accompanied by biogenic CO2 conversion to acetate.
Collaboration
Dive into the Sanae Sakai's collaboration.
National Institute of Advanced Industrial Science and Technology
View shared research outputsNational Institute of Advanced Industrial Science and Technology
View shared research outputs