Sanchay Kumar Biswas
Indian Veterinary Research Institute
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Sanchay Kumar Biswas.
Journal of Virological Methods | 2008
K.B. Pathak; Sanchay Kumar Biswas; Prabhakar A. Tembhurne; Madhusudan Hosamani; Veerakyathappa Bhanuprakash; Gaya Prasad; Raj Kumar Singh; T. J. Rasool; Bimalendu Mondal
Purification of bluetongue virus (BTV) group-specific VP7 protein, expressed in prokaryotic system as histidine-tagged fusion protein is described in the present study. The major antigenic portion of VP7 gene of BTV 23 was amplified from the extracted RNA by reverse transcription polymerase chain reaction and cloned. The recombinant expression construct (pET-VP7) was identified by the polymerase chain reaction and sequencing analysis. Expression of histidine-tagged fusion truncated VP7 protein with a molecular mass of 36 kDa was determined by Western blot analysis using anti-His antibody. The expressed VP7 was purified to near homogeneity by chromatography on nickel-agarose column as judged by sodium dodesyl sulfate-polyacrylamide gel electrophoresis analysis. The purified VP7 protein was recognized by antibody to BTV in Western blot analysis. The capability of the recombinant VP7 protein to differentiate hyperimmune serum of rabbit to BTV from normal rabbit serum was evident in the enzyme-linked immunosorbent assay (ELISA). The purified VP7 reacted well with the 24 BTV serotype-specific sera obtained from OIE Reference Laboratory on bluetongue. Our results indicated that the expressed VP7 protein could be used as antigen for development of antibody-capture ELISA for detection BTV group-specific antibodies. This recombinant protein may also be used as antigen in competitive ELISA format.
Tropical Animal Health and Production | 2009
Bimalendu Mondal; Arnab Sen; Karam Chand; Sanchay Kumar Biswas; Ankan De; Kaushal Kishor Rajak; Soumendu Chakravarti
A mixed infection with peste des petits ruminants virus (PPRV) and bluetongue virus (BTV) occurred in goats which exhibited symptoms characteristic of PPR. A number of samples were collected from ailing or dead goats for labrotory diagnosis. Antibody to BTV and PPRV was detected in sera samples by competitive ELISA. No PPRV antigen was detected in tissue samples like lung and spleen, however, presence of PPRV antigen in some sera samples was confirmed by sandwich ELISA. All the blood samples collected from the ailing animals were found positive for BTV antigen by a sandwich ELISA. BTV- and PPRV nucleic acids were amplified from the pooled blood and tissue samples respectively by RT-PCR assays. The identity of the amplicons was confirmed by cloning and sequencing. All these tests confirm that the goats were infected with PPRV and BTV simultaneously. Isolation of viruses from the clinical samples is underway.
Journal of Virological Methods | 2009
Karam Chand; Sanchay Kumar Biswas; Ankan De; Baneswar Sing; Bimalendu Mondal
A polyclonal antibody-based sandwich ELISA (s-ELISA) was developed for the detection of bluetongue viruses (BTV) in cell culture lysates and blood samples of sheep infected experimentally. Rabbit antiserum to purified BTV particles and guineapig antiserum to core particles were used as capture antibody and detection antibody respectively. The assay has detected several of the BTV serotypes isolated in India so far. Other common viruses of small ruminants did not cross-react in the assay. The analytical sensitivity of the assay was estimated to be between 10(2.4) and 10(2.6)TCID(50)/ml with different serotypes of BTV. The sensitivity was compared with that of the reverse transcription polymerase chain reaction (RT-PCR) and the latter was found to be at least 100 times more sensitive. In the infected sheep, BTV antigen(s) was detected in blood as early as on 5-day post-infection (dpi) till 35 dpi. The assay may be useful for testing large number of samples in a very short time.
Transboundary and Emerging Diseases | 2012
A. I. Dadawala; Sanchay Kumar Biswas; W. Rehman; Karam Chand; Ankan De; B. S. Mathapati; P. Kumar; H. C. Chauhan; B. S. Chandel; Bimalendu Mondal
Bluetongue virus serotype-1 (BTV-1) was isolated from Culicoides oxystoma vectors captured on livestock farms in two places of Gujarat, India. The viruses were isolated on BHK-21 cells, which produced characteristic BTV-related cytopathic effects between 24 and 48 h post-infection. Virus antigen was demonstrated in infected cells at different passage by a BTV-specific sandwich ELISA. Further, polyacrylamide gel electrophoresis and silver staining of viral genomic RNA revealed ten double-stranded RNA segments characteristic of BTV. Serotype of the isolates was identified by virus neutralization and PCR coupled with sequencing. The isolates were designated as SKN-7 and SKN-8 and their genome segment-2 (VP2) were sequenced. Phylogenetic analyses revealed very close relationship between them although they are not identical. SKN-8 showed closer relationship with a recently isolated BTV-1 from goat. Bluetongue virus was earlier isolated from Culicoides in adjacent state more than 20 years ago, although the serotype of the virus was not determined.
Journal of Virological Methods | 2015
Sreekala S. Mohandas; Dhanavelu Muthuchelvan; Awadh Bihari Pandey; Sanchay Kumar Biswas; Karam Chand; Gnanavel Venkatesan; Dheeraj Choudhary; Muthannan Andavar Ramakrishnan; Bimalendu Mondal
A single-step reverse transcription loop mediated isothermal amplification (RT-LAMP) assay targeting NS1 - a highly conserved gene among BTV serotypes was optimized and validated with seven serotypes: BTV-1, BTV-2, BTV-9, BTV-10, BTV-16, BTV-21 and BTV-23. The relative sensitivity of the assay was 0.3 TCID50 and no cross reactivity could be observed with foot and mouth disease, peste-des-petits-ruminants, goatpox, sheeppox and orf viruses. The established assay was also assessed by screening of clinical samples and the result is comparable with conventional RT-PCR. The RT-LAMP assay described here could be an additional tool to the existing assays for diagnosis/surveillance of BTV.
Archives of Virology | 2010
Prabhakar A. Tembhurne; Bimalendu Mondal; Kunj B. Pathak; Sanchay Kumar Biswas; Aniket Sanyal; Mahendra P. Yadav; Santanu K. Bandyopadhyay; Raj Kumar Singh
Sequence analysis of segment 2 (seg-2) of three Indian bluetongue virus (BTV) isolates, Dehradun, Rahuri and Bangalore revealed 99% nucleotide identity amongst them and 96% with the reference BTV 23. Phylogenetic analysis grouped the isolates in ‘nucleotype D’. The deduced amino acid (aa) sequence of the Bangalore isolate showed a high variability in a few places compared to other isolates. B-cell epitope analyses predicted an epitope that is present exclusively in the Bangalore isolate. Two-way cross serum neutralization confirmed that Bangalore isolate is antigenically different from the other two isolates. The results of this study suggest that these three isolates are VP2 variants of BTV 23. This signifies that non-cross-neutralizing variants of the same BTV serotype should be included in vaccine preparation.
VirusDisease | 2016
Karam Chand; Sanchay Kumar Biswas; Bimalendu Mondal
An immuno-affinity chromatography technique for purification of infective bluetongue virus (BTV) has been descried using anti-core antibodies. BTV anti-core antibodies (prepared in guinea pig) were mixed with cell culture-grown BTV-1 and then the mixture was added to the cyanogens bromide-activated protein-A Sepharose column. Protein A binds to the antibody which in turn binds to the antigen (i.e. BTV). After thorough washing, antigen–antibody and antibody-protein A couplings were dissociated with 4M MgCl2, pH6.5. Antibody molecules were removed by dialysis and virus particles were concentrated by spin column ultrafiltration. Dialyzed and concentrated material was tested positive for BTV antigen by a sandwich ELISA and the infectivity of the chromatography-purified virus was demonstrated in cell culture. This method was applied for selective capture of BTV from a mixture of other viruses. As group-specific antibodies (against BTV core) were used to capture the virus, it is expected that virus of all BTV serotypes could be purified by this method. This method will be helpful for selective capture and enrichment of BTV from concurrently infected blood or tissue samples for efficient isolation in cell culture. Further, this method can be used for small scale purification of BTV avoiding ultracentrifugation.
Virus Genes | 2015
Nirmal Chacko; Nihar Nalini Mohanty; Sanchay Kumar Biswas; Karam Chand; Revanaiah Yogisharadhya; Awadh Bihari Pandey; Bimalendu Mondal; Sathish Bhadravati Shivachandra
Bluetongue, an arthropod-borne non-contagious hemorrhagic disease of small ruminants, is caused by bluetongue virus (BTV). Several structural and non-structural proteins encoded by BTV have been associated with virulence mechanisms. In the present study, the NS3 protein sequences of bluetongue viral serotypes were analyzed for the presence of heptad regions and oligomer formation. Bioinformatic analysis of NS3 sequences of all 26 BTV serotypes revealed the presence of at least three coiled-coil motifs (CCMs). A conserved α-helical heptad sequence was identified at 14–26 aa (CCM-I), 185–198aa (CCM-II), and 94–116 aa (CCM-III). Among these, CCM-I occurs close to the N-terminus of NS3 and was presumed to be involved in oligomerization. Furthermore, the N-terminus of NS3 (1M-R117 aa) was over-expressed as a recombinant fusion protein in a prokaryotic expression system. Biochemical characterization of recombinant NS3Nt protein revealed that it forms SDS-resistant dimers and high-order oligomers (hexamer and/or octamer) under reducing or non-reducing conditions. Coiled-coil motifs are believed to be critical for NS protein oligomerization and have potential roles in the formation of viroporin ring/pore either with six/eight subunits and this is the first study toward characterization of CCMs in NS3 of bluetongue virus.
Veterinary World | 2016
Shaswati Subhadarsini Pany; Sanchay Kumar Biswas; Karam Chand; Nihar Nalini Mohanty; Laxmi Narayan Sarangi; Bimalendu Mondal; Hemant Kumar Panda
Aim: The aim of the present study was to carry out antigenic detection of bluetongue virus (BTV) among the small ruminant population of two different geographical regions of Odisha (coastal and central) using recombinant VP7 (r-VP-7) based sandwich enzyme-linked immunosorbent assay (s-ELISA). Materials and Methods: Blood samples (n=274) were collected from two different geographical pockets of Odisha, which covered mostly the coastal and central regions. Of the total samples under study 185 were from goat and 89 were from sheep. The blood samples were tested for the presence of BTV antigen by r-VP7 based s-ELISA. Results: r-VP-7 s-ELISA detected BTV antigen in 52.43% and 44.94% of the goat and sheep population under study, respectively. This study highlights the antigenic persistence of BTV in the state for the 1st time. Conclusion: This high antigenic presence in both sheep and goat population suggests an alarming BTV infection in field conditions which warrants more systematic study directed toward isolation and characterization studies as well as the implementation of control strategy for BT in Odisha.
Brazilian Journal of Microbiology | 2016
Karam Chand; Sanchay Kumar Biswas; Gaurav K. Sharma; Arpit Saxena; Neha Tewari; Sonalika Mahajan; Awadh Bihari Pandey
This communication reports full genome sequencing of the bluetongue virus-1 (BTV-1) isolate MKD20/08/Ind from goat in northern India. The total BTV-1 genome size was found to be 19,190 bp. A comparison study between the Indian isolate and other global isolates revealed that it belongs to the ‘Eastern’ BTV topotype. The full genome sequence of BTV-1 will provide vital information on its geographical origin and it will also be proved useful for comparing the Indian isolate with global isolates from other host species.