Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Sanchita Mukherjee is active.

Publication


Featured researches published by Sanchita Mukherjee.


Journal of Biomolecular Structure & Dynamics | 2013

Influence of divalent magnesium ion on DNA: molecular dynamics simulation studies

Sanchita Mukherjee; Dhananjay Bhattacharyya

A large amount of experimental evidence is available on the effect of magnesium ions on the structure and stability of DNA double helix. Less is known, however, on how these ions affect the stability and dynamics of the molecule. The static time average pictures from X-ray structures or the quantum chemical energy minimized structures lack understanding of the dynamic DNA–ion interaction. The present work addresses these questions by molecular dynamics simulation studies on two DNA duplexes and their interaction with magnesium ions. Results show typical B-DNA character with occasional excursions to deviated states. We detected expected stability of the duplexes in terms of backbone conformations and base pair parameter by the CHARMM-27 force field. Ion environment analysis shows that Mg2+ retains the coordination sphere throughout the simulation with a preference for major groove over minor. An extensive analysis of the influence of the Mg2+ ion shows no evidence of the popular predictions of groove width narrowing by dipositive metal ion. The major groove atoms show higher occupancy and residence time compared to minor groove for magnesium, where no such distinction is found for the charge neutralizing Na+ ions. The determining factor of Mg2+ ion’s choice in DNA binding site evolves as the steric hindrance faced by the bulky hexahydrated cation where wider major groove gets the preference. We have shown that in case of binding of Mg2+ to DNA non electrostatic contributions play a major role. An animated Interactive 3D Complement (I3DC) is available in Proteopedia at http://proteopedia.org/w/Journal:JBSD:5


Biopolymers | 2014

Energy hyperspace for stacking interaction in AU/AU dinucleotide step: Dispersion-corrected density functional theory study

Sanchita Mukherjee; Senthilkumar Kailasam; Manju Bansal; Dhananjay Bhattacharyya

Double helical structures of DNA and RNA are mostly determined by base pair stacking interactions, which give them the base sequence-directed features, such as small roll values for the purine-pyrimidine steps. Earlier attempts to characterize stacking interactions were mostly restricted to calculations on fiber diffraction geometries or optimized structure using ab initio calculations lacking variation in geometry to comment on rather unusual large roll values observed in AU/AU base pair step in crystal structures of RNA double helices. We have generated stacking energy hyperspace by modeling geometries with variations along the important degrees of freedom, roll, and slide, which were chosen via statistical analysis as maximally sequence dependent. Corresponding energy contours were constructed by several quantum chemical methods including dispersion corrections. This analysis established the most suitable methods for stacked base pair systems despite the limitation imparted by number of atom in a base pair step to employ very high level of theory. All the methods predict negative roll value and near-zero slide to be most favorable for the purine-pyrimidine steps, in agreement with Calladines steric clash based rule. Successive base pairs in RNA are always linked by sugar-phosphate backbone with C3-endo sugars and this demands C1-C1 distance of about 5.4 Å along the chains. Consideration of an energy penalty term for deviation of C1-C1 distance from the mean value, to the recent DFT-D functionals, specifically ωB97X-D appears to predict reliable energy contour for AU/AU step. Such distance-based penalty improves energy contours for the other purine-pyrimidine sequences also.


Journal of Biosciences | 2012

Effect of temperature on DNA double helix: An insight from molecular dynamics simulation

Sangeeta Kundu; Sanchita Mukherjee; Dhananjay Bhattacharyya

The three-dimensional structure of DNA contains various sequence-dependent structural information, which control many cellular processes in life, such as replication, transcription, DNA repair, etc. For the above functions, DNA double helices need to unwind or melt locally, which is different from terminal melting, as often seen in molecular dynamics (MD) simulations or even in many DNA crystal structures. We have carried out detailed MD simulations of DNA double helices of regular oligonucleotide fragments as well as in polymeric constructs with water and charge-neutralizing counter-ions at several different temperatures. We wanted to eliminate the end-effect or terminal melting propensity by employing MD simulation of DNA oligonucleotides in such a manner that gives rise to properties of polymeric DNA of infinite length. The polymeric construct is expected to allow us to see local melting at elevated temperatures. Comparative structural analysis of oligonucleotides and its corresponding virtual polymer at various temperatures ranging from 300xa0K to 400xa0K is discussed. The general behaviour, such as volume expansion coefficients of both the simulations show high similarity, indicating polymeric construct, does not give many artificial constraints. Local melting of a polymer, even at elevated temperature, may need a high nucleation energy that was not available in the short (7xa0ns) simulations. We expected to observe such nucleation followed by cooperative melting of the polymers in longer MD runs. Such simulations of different polymeric sequences would facilitate us to predict probable melting origins in a polymeric DNA.


Biopolymers | 2015

Stacking interactions in RNA and DNA: Roll-slide energy hyperspace for ten unique dinucleotide steps

Sanchita Mukherjee; Senthilkumar Kailasam; Manju Bansal; Dhananjay Bhattacharyya

Understanding dinucleotide sequence directed structures of nuleic acids and their variability from experimental observation remained ineffective due to unavailability of statistically meaningful data. We have attempted to understand this from energy scan along twist, roll, and slide degrees of freedom which are mostly dependent on dinucleotide sequence using ab initio density functional theory. We have carried out stacking energy analysis in these dinucleotide parameter phase space for all ten unique dinucleotide steps in DNA and RNA using DFT‐D by ωB97X‐D/6‐31G(2d,2p), which appears to satisfactorily explain conformational preferences for AU/AU step in our recent study. We show that values of roll, slide, and twist of most of the dinucleotide sequences in crystal structures fall in the low energy region. The minimum energy regions with large twist values are associated with the roll and slide values of B‐DNA, whereas, smaller twist values correspond to higher stability to RNA and A‐DNA like conformations. Incorporation of solvent effect by CPCM method could explain the preference shown by some sequences to occur in B‐DNA or A‐DNA conformations. Conformational preference of BII sub‐state in B‐DNA is preferentially displayed mainly by pyrimidine–purine steps and partly by purine–purine steps. The purine–pyrimidine steps show largest effect of 5‐methyl group of thymine in stacking energy and the introduction of solvent reduces this effect significantly. These predicted structures and variabilities can explain the effect of sequence on DNA and RNA functionality.


Journal of Molecular Modeling | 2014

Contribution of phenylalanine side chain intercalation to the TATA-box binding protein-DNA interaction: molecular dynamics and dispersion-corrected density functional theory studies.

Manas Mondal; Sanchita Mukherjee; Dhananjay Bhattacharyya

Deformation of DNA takes place quite often due to binding of small molecules or proteins with DNA. Such deformation is significant due to minor groove binding and, besides electrostatic interactions, other non-covalent interactions may also play an important role in generating such deformation. TATA-box binding protein (TBP) binds to the minor groove of DNA at the TATA box sequence, producing a large-scale deformation in DNA and initiating transcription. In order to observe the interactions of protein residues with DNA in the minor groove that produce the deformation in the DNA structure, we carried out molecular dynamics simulations of the TBP–DNA system. The results reveal consistent partial intercalation of two Phe residues, distorting stacking interactions at two dinucleotide step sites. We carried out calculations based on dispersion-corrected density functional theory to understand the source of such stabilization. We observed favorable interaction energies between the Phe residues and the base pairs with which they interact. We suggest that salt-bridge interactions between the phosphate groups and Lys or Arg residues, along with the intercalation of Phe residues between two base pair stacks, stabilize the kinked and opened-up DNA conformation.


Journal of Computer-aided Molecular Design | 2014

Temperature effect on poly(dA).poly(dT): molecular dynamics simulation studies of polymeric and oligomeric constructs

Sanchita Mukherjee; Sangeeta Kundu; Dhananjay Bhattacharyya

Abstract Understanding unwinding and melting of double helical DNA is very important to characterize role of DNA in replication, transcription, translation etc. Sequence dependent melting thermodynamics is used extensively for detecting promoter regions but melting studies are generally done for short oligonucleotides. This study reports several molecular dynamics (MD) simulations of homopolymeric poly(dA).poly(dT) as regular oligonucleotide fragments as well as its corresponding polymeric constructs with water and charge-neutralizing counterions at different temperatures ranging from 300 to 400xa0K. We have eliminated the end-effect or terminal peeling propensity by employing MD simulation of DNA oligonucleotides in such a manner that gives rise to properties of polymeric DNA of infinite length. The dynamic properties such as basepairing and stacking geometry, groove width, backbone conformational parameters, bending, distribution of counter ions and number of hydrogen bonds of oligomeric and polymeric constructs of poly(dA).poly(dT) have been analyzed. The oligomer shows terminal fraying or peeling effect at temperatures above 340xa0K. The polymer shows partial melting at elevated temperatures although complete denaturations of basepairs do not take place. The analysis of cross strand hydrogen bonds shows that the number of N–H···O hydrogen bonds increases with increase in temperature while C–H···O hydrogen bond frequencies decrease with temperature. Restructuring of counterions in the minor groove with temperature appear as initiation of melting in duplex structures.


Biopolymers | 2015

Stacking geometry for non-canonical G:U wobble base pair containing dinucleotide sequences in RNA: dispersion-corrected DFT-D study.

Manas Mondal; Sanchita Mukherjee; Sukanya Halder; Dhananjay Bhattacharyya

Emergence of thousands of crystal structures of noncoding RNA molecules indicates its structural and functional diversity. RNA function is based upon a large variety of structural elements which are specifically assembled in the folded molecules. Along with the canonical Watson‐Crick base pairs, different orientations of the bases to form hydrogen‐bonded non‐canonical base pairs have also been observed in the available RNA structures. Frequencies of occurrences of different non‐canonical base pairs in RNA indicate their important role to maintain overall structure and functions of RNA. There are several reports on geometry and energetic stabilities of these non‐canonical base pairs. However, their stacking geometry and stacking stability with the neighboring base pairs are not well studied. Among the different non‐canonical base pairs, the G:U wobble base pair (G:U W:WC) is most frequently observed in the RNA double helices. Using quantum chemical method and available experimental data set we have studied the stacking geometry of G:U W:WC base pair containing dinucleotide sequences in roll‐slide parameters hyperspace for different values of twist. This study indicates that the G:U W:WC base pair can stack well with the canonical base pairs giving rise to large interaction energy. The overall preferred stacking geometry in terms of roll, twist and slide for the eleven possible dinucleotide sequences is seen to be quite dependent on their sequences.


Journal of Chemical Physics | 2017

Microscopic insight into thermodynamics of conformational changes of SAP-SLAM complex in signal transduction cascade

Sudipta Samanta; Sanchita Mukherjee

The signalling lymphocytic activation molecule (SLAM) family of receptors, expressed by an array of immune cells, associate with SLAM-associated protein (SAP)-related molecules, composed of single SH2 domain architecture. SAP activates Src-family kinase Fyn after SLAM ligation, resulting in a SLAM-SAP-Fyn complex, where, SAP binds the Fyn SH3 domain that does not involve canonical SH3 or SH2 interactions. This demands insight into this SAP mediated signalling cascade. Thermodynamics of the conformational changes are extracted from the histograms of dihedral angles obtained from the all-atom molecular dynamics simulations of this structurally well characterized SAP-SLAM complex. The results incorporate the binding induced thermodynamic changes of individual amino acid as well as the secondary structural elements of the protein and the solvent. Stabilization of the peptide partially comes through a strong hydrogen bonding network with the protein, while hydrophobic interactions also play a significant role where the peptide inserts itself into a hydrophobic cavity of the protein. SLAM binding widens SAPs second binding site for Fyn, which is the next step in the signal transduction cascade. The higher stabilization and less fluctuation of specific residues of SAP in the Fyn binding site, induced by SAP-SLAM complexation, emerge as the key structural elements to trigger the recognition of SAP by the SH3 domain of Fyn. The thermodynamic quantification of the protein due to complexation not only throws deeper understanding in the established mode of SAP-SLAM interaction but also assists in the recognition of the relevant residues of the protein responsible for alterations in its activity.


Journal of Computer-aided Molecular Design | 2017

Co-operative intra-protein structural response due to protein–protein complexation revealed through thermodynamic quantification: study of MDM2-p53 binding

Sudipta Samanta; Sanchita Mukherjee

The p53 protein activation protects the organism from propagation of cells with damaged DNA having oncogenic mutations. In normal cells, activity of p53 is controlled by interaction with MDM2. The well understood p53-MDM2 interaction facilitates design of ligands that could potentially disrupt or prevent the complexation owing to its emergence as an important objective for cancer therapy. However, thermodynamic quantification of the p53-peptide induced structural changes of the MDM2-protein remains an area to be explored. This study attempts to understand the conformational free energy and entropy costs due to this complex formation from the histograms of dihedral angles generated from molecular dynamics simulations. Residue-specific quantification illustrates that, hydrophobic residues of the protein contribute maximum to the conformational thermodynamic changes. Thermodynamic quantification of structural changes of the protein unfold the fact that, p53 binding provides a source of inter-element cooperativity among the protein secondary structural elements, where the highest affected structural elements (α2 and α4) found at the binding site of the protein affects faraway structural elements (β1 and Loop1) of the protein. The communication perhaps involves water mediated hydrogen bonded network formation. Further, we infer that in inhibitory F19A mutation of P53, though Phe19 is important in the recognition process, it has less prominent contribution in the stability of the complex. Collectively, this study provides vivid microscopic understanding of the interaction within the protein complex along with exploring mutation sites, which will contribute further to engineer the protein function and binding affinity.


Journal of Molecular Graphics & Modelling | 2016

Effect of temperature on the structure and hydration layer of TATA-box DNA: A molecular dynamics simulation study

Sudipta Samanta; Devanathan Raghunathan; Sanchita Mukherjee

DNA within the living cells experiences a diverse range of temperature, ranging from freezing condition to hot spring water. How the structure, the mechanical properties of DNA, and the solvation dynamics around DNA changes with the temperature is important to understand the functionality of DNA under those acute temperature conditions. In that notion, we have carried out molecular dynamics simulations of a DNA oligomer, containing TATA-box sequence for three different temperatures (250K, 300K and 350K). We observed that the structure of the DNA, in terms of backbone torsion angles, sugar pucker, base pair parameters, and base pair step parameters, did not show any unusual properties within the studied range of temperatures, but significant structural alteration was noticed between BI and BII forms at higher temperature. As expected, the flexibility of the DNA, in terms of the torsional rigidity and the bending rigidity is highly temperature dependent, confirming that flexibility increases with increase in temperature. Additionally, the groove widths of the studied DNA showed temperature sensitivity, specifically, the major groove width decreases and the minor groove width increases, respectively, with the increase in temperature. We observed that at higher temperature, water around both the major and the minor groove of the DNA is less structured. However, the water dynamics around the minor groove of the DNA is more restricted as compared to the water around the major groove throughout the studied range of temperatures, without any anomalous behavior.

Collaboration


Dive into the Sanchita Mukherjee's collaboration.

Top Co-Authors

Avatar

Dhananjay Bhattacharyya

Saha Institute of Nuclear Physics

View shared research outputs
Top Co-Authors

Avatar

Sangeeta Kundu

Saha Institute of Nuclear Physics

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Manju Bansal

Indian Institute of Science

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Gijo George

Indian Institute of Science

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sukanya Halder

Saha Institute of Nuclear Physics

View shared research outputs
Researchain Logo
Decentralizing Knowledge