Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Sandeep S. Dave is active.

Publication


Featured researches published by Sandeep S. Dave.


Proceedings of the National Academy of Sciences of the United States of America | 2008

Molecular subtypes of diffuse large B-cell lymphoma arise by distinct genetic pathways

Georg Lenz; George W. Wright; N. C. Tolga Emre; Holger Kohlhammer; Sandeep S. Dave; R. Eric Davis; Shannon Carty; Lloyd T. Lam; Arthur L. Shaffer; Wenming Xiao; John Powell; Andreas Rosenwald; German Ott; Hans Konrad Müller-Hermelink; Randy D. Gascoyne; Joseph M. Connors; Elias Campo; Elaine S. Jaffe; Jan Delabie; Erlend B. Smeland; Lisa M. Rimsza; Richard I. Fisher; Dennis D. Weisenburger; Wing C. Chan; Louis M. Staudt

Gene-expression profiling has been used to define 3 molecular subtypes of diffuse large B-cell lymphoma (DLBCL), termed germinal center B-cell-like (GCB) DLBCL, activated B-cell-like (ABC) DLBCL, and primary mediastinal B-cell lymphoma (PMBL). To investigate whether these DLBCL subtypes arise by distinct pathogenetic mechanisms, we analyzed 203 DLBCL biopsy samples by high-resolution, genome-wide copy number analysis coupled with gene-expression profiling. Of 272 recurrent chromosomal aberrations that were associated with gene-expression alterations, 30 were used differentially by the DLBCL subtypes (P < 0.006). An amplicon on chromosome 19 was detected in 26% of ABC DLBCLs but in only 3% of GCB DLBCLs and PMBLs. A highly up-regulated gene in this amplicon was SPIB, which encodes an ETS family transcription factor. Knockdown of SPIB by RNA interference was toxic to ABC DLBCL cell lines but not to GCB DLBCL, PMBL, or myeloma cell lines, strongly implicating SPIB as an oncogene involved in the pathogenesis of ABC DLBCL. Deletion of the INK4a/ARF tumor suppressor locus and trisomy 3 also occurred almost exclusively in ABC DLBCLs and was associated with inferior outcome within this subtype. FOXP1 emerged as a potential oncogene in ABC DLBCL that was up-regulated by trisomy 3 and by more focal high-level amplifications. In GCB DLBCL, amplification of the oncogenic mir-17–92 microRNA cluster and deletion of the tumor suppressor PTEN were recurrent, but these events did not occur in ABC DLBCL. Together, these data provide genetic evidence that the DLBCL subtypes are distinct diseases that use different oncogenic pathways.


Science | 2008

Oncogenic CARD11 mutations in human diffuse large B cell lymphoma

Georg Lenz; R. Eric Davis; Vu N. Ngo; Lloyd T. Lam; Thaddeus C. George; George W. Wright; Sandeep S. Dave; Hong Zhao; Weihong Xu; Andreas Rosenwald; German Ott; Hans Konrad Müller-Hermelink; Randy D. Gascoyne; Joseph M. Connors; Lisa M. Rimsza; Elias Campo; Elaine S. Jaffe; Jan Delabie; Erlend B. Smeland; Richard I. Fisher; Wing C. Chan; Louis M. Staudt

Diffuse large B cell lymphoma (DLBCL) is the most common form of non-Hodgkins lymphoma. In the least curable (ABC) subtype of DLBCL, survival of the malignant cells is dependent on constitutive activation of the nuclear factor–κB (NF-κB) signaling pathway. In normal B cells, antigen receptor–induced NF-κB activation requires CARD11, a cytoplasmic scaffolding protein. To determine whether CARD11 contributes to tumorigenesis, we sequenced the CARD11 gene in human DLBCL tumors. We detected missense mutations in 7 of 73 ABC DLBCL biopsies (9.6%), all within exons encoding the coiled-coil domain. Experimental introduction of CARD11 coiled-coil domain mutants into lymphoma cell lines resulted in constitutive NF-κB activation and enhanced NF-κB activity upon antigen receptor stimulation. These results demonstrate that CARD11 is a bona fide oncogenein DLBCL, providing a genetic rationale for the development of pharmacological inhibitors of the CARD11 pathway for DLBCL therapy.


Nature | 2006

A loss-of-function RNA interference screen for molecular targets in cancer

Vu N. Ngo; R. Eric Davis; Laurence Lamy; Xin Yu; Hong Zhao; Georg Lenz; Lloyd T. Lam; Sandeep S. Dave; Liming Yang; John Powell; Louis M. Staudt

The pursuit of novel therapeutic agents in cancer relies on the identification and validation of molecular targets. Hallmarks of cancer include self-sufficiency in growth signals and evasion from apoptosis; genes that regulate these processes may be optimal for therapeutic attack. Here we describe a loss-of-function screen for genes required for the proliferation and survival of cancer cells using an RNA interference library. We used a doxycycline-inducible retroviral vector for the expression of small hairpin RNAs (shRNAs) to construct a library targeting 2,500 human genes. We used retroviral pools from this library to infect cell lines representing two distinct molecular subgroups of diffuse large B-cell lymphoma (DLBCL), termed activated B-cell-like DLBCL and germinal centre B-cell-like DLBCL. Each vector was engineered to contain a unique 60-base-pair ‘bar code’, allowing the abundance of an individual shRNA vector within a population of transduced cells to be measured using microarrays of the bar-code sequences. We observed that a subset of shRNA vectors was depleted from the transduced cells after three weeks in culture only if shRNA expression was induced. In activated B-cell-like DLBCL cells, but not germinal centre B-cell-like DLBCL cells, shRNAs targeting the NF-κB pathway were depleted, in keeping with the essential role of this pathway in the survival of activated B-cell-like DLBCL. This screen uncovered CARD11 as a key upstream signalling component responsible for the constitutive IκB kinase activity in activated B-cell-like DLBCL. The methodology that we describe can be used to establish a functional taxonomy of cancer and help reveal new classes of therapeutic targets distinct from known oncogenes.


The New England Journal of Medicine | 2014

Resistance Mechanisms for the Bruton's Tyrosine Kinase Inhibitor Ibrutinib

Jennifer A. Woyach; Richard R. Furman; Ta Ming Liu; Hatice Gulcin Ozer; Marc Zapatka; Amy S. Ruppert; Ling Xue; Daniel Hsieh Hsin Li; Susanne Steggerda; Matthias Versele; Sandeep S. Dave; Jenny Zhang; Ayse Selen Yilmaz; Samantha Jaglowski; Kristie A. Blum; Arletta Lozanski; Gerard Lozanski; Danelle F. James; Jacqueline C. Barrientos; Peter Lichter; Stephan Stilgenbauer; Joseph J. Buggy; Betty Y. Chang; Amy J. Johnson; John C. Byrd

BACKGROUND Ibrutinib is an irreversible inhibitor of Brutons tyrosine kinase (BTK) and is effective in chronic lymphocytic leukemia (CLL). Resistance to irreversible kinase inhibitors and resistance associated with BTK inhibition have not been characterized. Although only a small proportion of patients have had a relapse during ibrutinib therapy, an understanding of resistance mechanisms is important. We evaluated patients with relapsed disease to identify mutations that may mediate ibrutinib resistance. METHODS We performed whole-exome sequencing at baseline and the time of relapse on samples from six patients with acquired resistance to ibrutinib therapy. We then performed functional analysis of identified mutations. In addition, we performed Ion Torrent sequencing for identified resistance mutations on samples from nine patients with prolonged lymphocytosis. RESULTS We identified a cysteine-to-serine mutation in BTK at the binding site of ibrutinib in five patients and identified three distinct mutations in PLCγ2 in two patients. Functional analysis showed that the C481S mutation of BTK results in a protein that is only reversibly inhibited by ibrutinib. The R665W and L845F mutations in PLCγ2 are both potentially gain-of-function mutations that lead to autonomous B-cell-receptor activity. These mutations were not found in any of the patients with prolonged lymphocytosis who were taking ibrutinib. CONCLUSIONS Resistance to the irreversible BTK inhibitor ibrutinib often involves mutation of a cysteine residue where ibrutinib binding occurs. This finding, combined with two additional mutations in PLCγ2 that are immediately downstream of BTK, underscores the importance of the B-cell-receptor pathway in the mechanism of action of ibrutinib in CLL. (Funded by the National Cancer Institute and others.).


Blood | 2009

Differential efficacy of bortezomib plus chemotherapy within molecular subtypes of diffuse large B-cell lymphoma

Kieron Dunleavy; Stefania Pittaluga; Myron S. Czuczman; Sandeep S. Dave; George E. Wright; Nicole Grant; Margaret Shovlin; Elaine S. Jaffe; John E. Janik; Louis M. Staudt; Wyndham H. Wilson

Gene expression profiling of diffuse large B-cell lymphoma (DLBCL) has revealed distinct molecular subtypes that include germinal center B cell-like (GCB) and activated B cell-like (ABC) DLBCL. ABC DLBCL has a worse survival after upfront chemotherapy and is characterized by constitutive activation of the antiapoptotic nuclear factor-kappa B (NF-kappaB) pathway, which can inhibit chemotherapy. We hypothesized that inhibition of NF-kappaB might sensitize ABC but not GCB DLBCL to chemotherapy and improve outcome. As the proteasome inhibitor bortezomib can inhibit NF-kappaB through blocking IkappaBalpha degradation, we investigated bortezomib alone followed by bortezomib and doxorubicin-based chemotherapy in recurrent DLBCL. Tumor tissue was analyzed by gene expression profiling and/or immunohistochemistry to identify molecular DLBCL subtypes. As a control, we showed that relapsed/refractory ABC and GCB DLBCL have equally poor survivals after upfront chemotherapy. Bortezomib alone had no activity in DLBCL, but when combined with chemotherapy, it demonstrated a significantly higher response (83% vs 13%; P < .001) and median overall survival (10.8 vs 3.4 months; P = .003) in ABC compared with GCB DLBCL, respectively. These results suggest bortezomib enhances the activity of chemotherapy in ABC but not GCB DLBCL, and provide a rational therapeutic approach based on genetically distinct DLBCL subtypes. This trial is registered with http://www.ClinicalTrials.gov under identifier NCT00057902.


Nature | 2008

IRF4 addiction in multiple myeloma

Arthur L. Shaffer; N. C. Tolga Emre; Laurence Lamy; Vu N. Ngo; George E. Wright; Wenming Xiao; John Powell; Sandeep S. Dave; Xin Yu; Hong Zhao; Yuxin Zeng; Bangzheng Chen; Joshua Epstein; Louis M. Staudt

The transcription factor IRF4 (interferon regulatory factor 4) is required during an immune response for lymphocyte activation and the generation of immunoglobulin-secreting plasma cells. Multiple myeloma, a malignancy of plasma cells, has a complex molecular aetiology with several subgroups defined by gene expression profiling and recurrent chromosomal translocations. Moreover, the malignant clone can sustain multiple oncogenic lesions, accumulating genetic damage as the disease progresses. Current therapies for myeloma can extend survival but are not curative. Hence, new therapeutic strategies are needed that target molecular pathways shared by all subtypes of myeloma. Here we show, using a loss-of-function, RNA-interference-based genetic screen, that IRF4 inhibition is toxic to myeloma cell lines, regardless of transforming oncogenic mechanism. Gene expression profiling and genome-wide chromatin immunoprecipitation analysis uncovered an extensive network of IRF4 target genes and identified MYC as a direct target of IRF4 in activated B cells and myeloma. Unexpectedly, IRF4 was itself a direct target of MYC transactivation, generating an autoregulatory circuit in myeloma cells. Although IRF4 is not genetically altered in most myelomas, they are nonetheless addicted to an aberrant IRF4 regulatory network that fuses the gene expression programmes of normal plasma cells and activated B cells.


Proceedings of the National Academy of Sciences of the United States of America | 2013

Genetic heterogeneity of diffuse large B-cell lymphoma

Jenny Zhang; Vladimir Grubor; Cassandra Love; Anjishnu Banerjee; Kristy L. Richards; Piotr A. Mieczkowski; Cherie H. Dunphy; William W.L. Choi; Wing Y. Au; Gopesh Srivastava; Patricia L. Lugar; David A. Rizzieri; Anand S. Lagoo; Leon Bernal-Mizrachi; Karen P. Mann; Christopher R. Flowers; Kikkeri N. Naresh; Andrew M. Evens; Leo I. Gordon; Magdalena Czader; Javed Gill; Eric D. Hsi; Qingquan Liu; Alice Fan; Katherine Walsh; Dereje D. Jima; Lisa L. Smith; Amy J. Johnson; John C. Byrd; Micah A. Luftig

Diffuse large B-cell lymphoma (DLBCL) is the most common form of lymphoma in adults. The disease exhibits a striking heterogeneity in gene expression profiles and clinical outcomes, but its genetic causes remain to be fully defined. Through whole genome and exome sequencing, we characterized the genetic diversity of DLBCL. In all, we sequenced 73 DLBCL primary tumors (34 with matched normal DNA). Separately, we sequenced the exomes of 21 DLBCL cell lines. We identified 322 DLBCL cancer genes that were recurrently mutated in primary DLBCLs. We identified recurrent mutations implicating a number of known and not previously identified genes and pathways in DLBCL including those related to chromatin modification (ARID1A and MEF2B), NF-κB (CARD11 and TNFAIP3), PI3 kinase (PIK3CD, PIK3R1, and MTOR), B-cell lineage (IRF8, POU2F2, and GNA13), and WNT signaling (WIF1). We also experimentally validated a mutation in PIK3CD, a gene not previously implicated in lymphomas. The patterns of mutation demonstrated a classic long tail distribution with substantial variation of mutated genes from patient to patient and also between published studies. Thus, our study reveals the tremendous genetic heterogeneity that underlies lymphomas and highlights the need for personalized medicine approaches to treating these patients.


Nature Genetics | 2012

The genetic landscape of mutations in Burkitt lymphoma

Cassandra Love; Zhen Sun; Dereje D. Jima; Guojie Li; Jenny Zhang; Rodney R. Miles; Kristy L. Richards; Cherie H. Dunphy; William W.L. Choi; Gopesh Srivastava; Patricia L. Lugar; David A. Rizzieri; Anand S. Lagoo; Leon Bernal-Mizrachi; Karen P. Mann; Christopher R. Flowers; Kikkeri N. Naresh; Andrew M. Evens; Amy Chadburn; Leo I. Gordon; Magdalena Czader; Javed Gill; Eric D. Hsi; Adrienne Greenough; Andrea B. Moffitt; Matthew McKinney; Anjishnu Banerjee; Vladimir Grubor; Shawn Levy; David B. Dunson

Burkitt lymphoma is characterized by deregulation of MYC, but the contribution of other genetic mutations to the disease is largely unknown. Here, we describe the first completely sequenced genome from a Burkitt lymphoma tumor and germline DNA from the same affected individual. We further sequenced the exomes of 59 Burkitt lymphoma tumors and compared them to sequenced exomes from 94 diffuse large B-cell lymphoma (DLBCL) tumors. We identified 70 genes that were recurrently mutated in Burkitt lymphomas, including ID3, GNA13, RET, PIK3R1 and the SWI/SNF genes ARID1A and SMARCA4. Our data implicate a number of genes in cancer for the first time, including CCT6B, SALL3, FTCD and PC. ID3 mutations occurred in 34% of Burkitt lymphomas and not in DLBCLs. We show experimentally that ID3 mutations promote cell cycle progression and proliferation. Our work thus elucidates commonly occurring gene-coding mutations in Burkitt lymphoma and implicates ID3 as a new tumor suppressor gene.


American Journal of Pathology | 2004

BCL2 Translocation Defines a Unique Tumor Subset within the Germinal Center B-Cell-Like Diffuse Large B-Cell Lymphoma

Javeed Iqbal; Warren G. Sanger; Douglas E. Horsman; Andreas Rosenwald; Diane L. Pickering; Bhavana J. Dave; Sandeep S. Dave; Li Xiao; Kajia Cao; Quiming Zhu; Simon Sherman; Christine P. Hans; Dennis D. Weisenburger; Timothy C. Greiner; Randy D. Gascoyne; German Ott; H. Konrad Muller-Hermelink; Jan Delabie; Rita M. Braziel; Elaine S. Jaffe; Elias Campo; James C. Lynch; Joseph M. Connors; Julie M. Vose; James O. Armitage; Thomas M. Grogan; Louis M. Staudt; Wing C. Chan

Gene expression profiling of diffuse large B-cell lymphoma (DLBCL) has revealed prognostically important subgroups: germinal center B-cell-like (GCB) DLBCL, activated B cell-like (ABC) DLBCL, and primary mediastinal large B-cell lymphoma. The t(14;18)(q32;q21) has been reported previously to define a unique subset within the GCB-DLBCL. We evaluated for the translocation in 141 cases of DLBCL that were successfully gene expression profiled. Using a dual-probe fluorescence in situ hybridization assay, we detected the t(14;18) in 17% of DLBCLs and in 34% of the GCB subgroup which contained the vast majority of positive cases. In addition, 12 t(14;18)-positive cases detected by polymerase chain reaction assays on additional samples were added to the fluorescence in situ hybridization-positive cases for subsequent analysis. Immunohistochemical data indicated that BCL2, BCL6, and CD10 protein were preferentially expressed in the t(14;18)-positive cases as compared to t(14;18)-negative cases. Within the GCB subgroup, the expression of BCL2 and CD10, but not BCL6, differed significantly between cases with or without the t(14;18): 88% versus 24% for BCL2 and 72% versus 32% for CD10, respectively. In the GCB-DLBCL subgroup, a heterogeneous group of genes is overexpressed in the t(14;18)-positive subset, among which BCL2 is a significant discriminator. Interestingly, the t(14;18)-negative subset is dominated by overexpression of cell cycle-associated genes, indicating that these tumors are significantly more proliferative, suggesting distinctive pathogenetic mechanisms. However, despite this higher proliferative activity, there was no significant difference in overall or failure-free survival between the t(14;18)-positive and -negative subsets within the GCB subgroup.


Haematologica | 2009

SOX11 expression is highly specific for mantle cell lymphoma and identifies the cyclin D1-negative subtype

Ana Mozos; Cristina Royo; Elena Hartmann; Daphne de Jong; Cristina Baró; Alexandra Valera; Kai Fu; Dennis D. Weisenburger; Jan Delabie; Shih Sung Chuang; Elaine S. Jaffe; Carmen Ruíz-Marcellán; Sandeep S. Dave; Lisa M. Rimsza; Rita M. Braziel; Randy D. Gascoyne; Francisco Solé; Armando López-Guillermo; Dolors Colomer; Louis M. Staudt; Andreas Rosenwald; German Ott; Pedro Jares; Elias Campo

Cyclin D1-negative mantle cell lymphoma is difficult to distinguish from other small B-cell lymphomas. This study shows that SOX11 mRNA and nuclear protein expression is a highly specific marker for both cyclin D1-positive and negative mantle cell lymphoma. See related perspective article on page 1488. Background Cyclin D1-negative mantle cell lymphoma is difficult to distinguish from other small B-cell lymphomas. The clinical and pathological characteristics of patients with this form of lymphoma have not been well defined. Overexpression of the transcription factor SOX11 has been observed in conventional mantle cell lymphoma. The aim of this study was to determine whether this gene is expressed in cyclin D1-negative mantle cell lymphoma and whether its detection may be useful to identify these tumors. Design and Methods The microarray database of 238 mature B-cell neoplasms was re-examined. SOX11 protein expression was investigated immunohistochemically in 12 cases of cyclin D1-negative mantle cell lymphoma, 54 cases of conventional mantle cell lymphoma, and 209 additional lymphoid neoplasms. Results SOX11 mRNA was highly expressed in conventional and cyclin D1-negative mantle cell lymphoma and in 33% of the cases of Burkitt’s lymphoma but not in any other mature lymphoid neoplasm. SOX11 nuclear protein was detected in 50 cases (93%) of conventional mantle cell lymphoma and also in the 12 cyclin D1-negative cases of mantle cell lymphoma, the six cases of lymphoblastic lymphomas, in two of eight cases of Burkitt’s lymphoma, and in two of three T-prolymphocytic leukemias but was negative in the remaining lymphoid neoplasms. Cyclin D2 and D3 mRNA levels were significantly higher in cyclin D1-negative mantle cell lymphoma than in conventional mantle cell lymphoma but the protein expression was not discriminative. The clinico-pathological features and outcomes of the patients with cyclin D1-negative mantle cell lymphoma identified by SOX11 expression were similar to those of patients with conventional mantle cell lymphoma. Conclusions SOX11 mRNA and nuclear protein expression is a highly specific marker for both cyclin D1-positive and negative mantle cell lymphoma.

Collaboration


Dive into the Sandeep S. Dave's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Dereje D. Jima

North Carolina State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Louis M. Staudt

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Elaine S. Jaffe

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Kristy L. Richards

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar

Elias Campo

University of Barcelona

View shared research outputs
Top Co-Authors

Avatar

Dennis D. Weisenburger

University of Nebraska Medical Center

View shared research outputs
Researchain Logo
Decentralizing Knowledge