Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Sandeep Tiwari is active.

Publication


Featured researches published by Sandeep Tiwari.


Drug Development Research | 2011

In silico subtractive genomics for target identification in human bacterial pathogens

Debmalya Barh; Sandeep Tiwari; Neha Jain; Amjad Ali; Anderson Rodrigues dos Santos; Amarendra Narayan Misra; Vasco Azevedo; Anil Kumar

Target identification is the first step in the drug and vaccine discovery process; in silico subtractive genomics is widely used in this process. Using this approach, in recent years, a large number of targets have been identified for bacterial pathogens that are either drug resistant or for which no suitable vaccine is available; most such reports concern a specific pathogen. The in silico method reduces the time as well as the cost of target screening. Although a powerful technique that can be applied to a wide range of pathogens, there are many pitfalls in the analysis and interpretation of the data. We review this approach, including targets that have been identified with this technique and various other aspects, including advantages and disadvantages. We also discuss our own experiences using this technology. Drug Dev Res 72: 162–177, 2011.


Chemical Biology & Drug Design | 2011

A novel comparative genomics analysis for common drug and vaccine targets in Corynebacterium pseudotuberculosis and other CMN group of human pathogens.

Debmalya Barh; Neha Jain; Sandeep Tiwari; Bibhu Prasad Parida; Vívian D’Afonseca; Liwei Li; Amjad Ali; Anderson Rodrigues dos Santos; Luis Carlos Guimarães; Siomar de Castro Soares; Anderson Miyoshi; Atanu Bhattacharjee; Amarendra Narayan Misra; Artur Silva; Anil Kumar; Vasco Azevedo

Caseous lymphadenitis is a chronic goat and sheep disease caused by Corynebacterium pseudotuberculosis (Cp) that accounts for a huge economic loss worldwide. Proper vaccination or medication is not available because of the lack of understanding of molecular biology of the pathogen. In a recent approach, four Cp (CpFrc41, Cp1002, CpC231, and CpI‐19) genomes were sequenced to elucidate the molecular pathology of the bacteria. In this study, using these four genome sequences along with other eight genomes (total 12 genomes) and a novel subtractive genomics approach (first time ever applied to a veterinary pathogen), we identified potential conserved common drug and vaccine targets of these four Cp strains along with other Corybacterium, Mycobacterium and Nocardia (CMN) group of human pathogens (Corynebacterium diphtheriae and Mycobacterium tuberculosis) considering goat, sheep, bovine, horse, and human as the most affected hosts. The minimal genome of Cp1002 was found to consist of 724 genes, and 20 conserved common targets (to all Cp strains as well as CMN group of pathogens) from various metabolic pathways (13 from host‐pathogen common and seven from pathogen’s unique pathways) are potential targets irrespective of all hosts considered. ubiA from host‐pathogen common pathway and an ABC‐like transporter from unique pathways may serve dual (drug and vaccine) targets. Two Corynebacterium‐specific (mscL and resB) and one broad‐spectrum (rpmB) novel targets were also identified. Strain‐specific targets are also discussed. Six important targets were subjected to virtual screening, and one compound was found to be potent enough to render two targets (cdc and nrdL). We are currently validating all identified targets and lead compounds.


BMC Genomics | 2015

An integrated structural proteomics approach along the druggable genome of Corynebacterium pseudotuberculosis species for putative druggable targets

Leandro G. Radusky; Syed Shah Hassan; Esteban Lanzarotti; Sandeep Tiwari; Syed Babar Jamal; Javed Ali; Amjad Ali; Rafaela Salgado Ferreira; Debmalya Barh; Artur Silva; Adrián G. Turjanski; Vasco Azevedo

BackgroundThe bacterium Corynebacterium pseudotuberculosis (Cp) causes caseous lymphadenitis (CLA), mastitis, ulcerative lymphangitis, and oedema in a number of hosts, comprising ruminants, thereby intimidating economic and dairy industries worldwide. So far there is no effective drug or vaccine available against Cp. Previously, a pan-genomic analysis was performed for both biovar equi and biovar ovis and a Pathogenicity Islands (PAIS) analysis within the strains highlighted a large set of proteins that could be relevant therapeutic targets for controlling the onset of CLA. In the present work, a structural druggability analysis pipeline was accomplished along 15 previously sequenced Cp strains from both biovar equi and biovar ovis.Methods and resultsWe computed the whole modelome of a reference strain Cp1002 (NCBI Accession: NC_017300.1) and then the homology models of proteins, of 14 different Cp strains, with high identity (≥ 85%) to the reference strain were also done. Druggability score of all proteins pockets was calculated and only those targets that have a highly druggable (HD) pocket in all strains were kept, a set of 58 proteins. Finally, this information was merged with the previous PAIS analysis giving two possible highly relevant targets to conduct drug discovery projects. Also, off-targeting information against host organisms, including Homo sapiens and a further analysis for protein essentiality provided a final set of 31 druggable, essential and non-host homologous targets, tabulated in table S4, additional file 1. Out of 31 globally druggable targets, 9 targets have already been reported in other pathogenic microorganisms, 3 of them (3-isopropylmalate dehydratase small subunit, 50S ribosomal protein L30, Chromosomal replication initiator protein DnaA) in C. pseudotuberculosis.ConclusionOverall we provide valuable information of possible targets against C. pseudotuberculosis where some of these targets have already been reported in other microorganisms for drug discovery projects, also discarding targets that might be physiologically relevant but are not amenable for drug binding. We propose that the constructed in silico dataset might serve as a guidance for the scientific community to have a better understanding while selecting putative therapeutic protein candidates as druggable ones as effective measures against C. pseudotuberculosis.


BMC Genomics | 2014

Proteome scale comparative modeling for conserved drug and vaccine targets identification in Corynebacterium pseudotuberculosis

Syed Shah Hassan; Sandeep Tiwari; Luis Carlos Guimarães; Syed Babar Jamal; Edson L. Folador; Neha Sharma; Siomar de Castro Soares; Sintia Almeida; Amjad Ali; Arshad Islam; Fabiana Dias Póvoa; Vinicius Augusto Carvalho de Abreu; Neha Jain; Antaripa Bhattacharya; Lucky Juneja; Anderson Miyoshi; Artur Silva; Debmalya Barh; Adrián G. Turjanski; Vasco Azevedo; Rafaela Salgado Ferreira

Corynebacterium pseudotuberculosis (Cp) is a pathogenic bacterium that causes caseous lymphadenitis (CLA), ulcerative lymphangitis, mastitis, and edematous to a broad spectrum of hosts, including ruminants, thereby threatening economic and dairy industries worldwide. Currently there is no effective drug or vaccine available against Cp. To identify new targets, we adopted a novel integrative strategy, which began with the prediction of the modelome (tridimensional protein structures for the proteome of an organism, generated through comparative modeling) for 15 previously sequenced C. pseudotuberculosis strains. This pan-modelomics approach identified a set of 331 conserved proteins having 95-100% intra-species sequence similarity. Next, we combined subtractive proteomics and modelomics to reveal a set of 10 Cp proteins, which may be essential for the bacteria. Of these, 4 proteins (tcsR, mtrA, nrdI, and ispH) were essential and non-host homologs (considering man, horse, cow and sheep as hosts) and satisfied all criteria of being putative targets. Additionally, we subjected these 4 proteins to virtual screening of a drug-like compound library. In all cases, molecules predicted to form favorable interactions and which showed high complementarity to the target were found among the top ranking compounds. The remaining 6 essential proteins (adk, gapA, glyA, fumC, gnd, and aspA) have homologs in the host proteomes. Their active site cavities were compared to the respective cavities in host proteins. We propose that some of these proteins can be selectively targeted using structure-based drug design approaches (SBDD). Our results facilitate the selection of C. pseudotuberculosis putative proteins for developing broad-spectrum novel drugs and vaccines. A few of the targets identified here have been validated in other microorganisms, suggesting that our modelome strategy is effective and can also be applicable to other pathogens.


PLOS ONE | 2013

Exoproteome and Secretome Derived Broad Spectrum Novel Drug and Vaccine Candidates in Vibrio cholerae Targeted by Piper betel Derived Compounds

Debmalya Barh; Neha Barve; Krishnakant Gupta; Sudha Chandra; Neha Jain; Sandeep Tiwari; Nidia León-Sicairos; Adrian Canizalez-Roman; Anderson Rodrigues dos Santos; Syed Shah Hassan; Sintia Almeida; Rommel Thiago Jucá Ramos; Vinicius Augusto Carvalho de Abreu; Adriana Ribeiro Carneiro; Siomar de Castro Soares; Thiago Luiz de Paula Castro; Anderson Miyoshi; Artur Silva; Anil Kumar; Amarendra Narayan Misra; Kenneth Blum; Eric R. Braverman; Vasco Azevedo

Vibrio cholerae is the causal organism of the cholera epidemic, which is mostly prevalent in developing and underdeveloped countries. However, incidences of cholera in developed countries are also alarming. Because of the emergence of new drug-resistant strains, even though several generic drugs and vaccines have been developed over time, Vibrio infections remain a global health problem that appeals for the development of novel drugs and vaccines against the pathogen. Here, applying comparative proteomic and reverse vaccinology approaches to the exoproteome and secretome of the pathogen, we have identified three candidate targets (ompU, uppP and yajC) for most of the pathogenic Vibrio strains. Two targets (uppP and yajC) are novel to Vibrio, and two targets (uppP and ompU) can be used to develop both drugs and vaccines (dual targets) against broad spectrum Vibrio serotypes. Using our novel computational approach, we have identified three peptide vaccine candidates that have high potential to induce both B- and T-cell-mediated immune responses from our identified two dual targets. These two targets were modeled and subjected to virtual screening against natural compounds derived from Piper betel. Seven compounds were identified first time from Piper betel to be highly effective to render the function of these targets to identify them as emerging potential drugs against Vibrio. Our preliminary validation suggests that these identified peptide vaccines and betel compounds are highly effective against Vibrio cholerae. Currently we are exhaustively validating these targets, candidate peptide vaccines, and betel derived lead compounds against a number of Vibrio species.


BioMed Research International | 2015

Pan-genome analysis of human gastric pathogen H. pylori: comparative genomics and pathogenomics approaches to identify regions associated with pathogenicity and prediction of potential core therapeutic targets.

Amjad Ali; Anam Naz; Siomar de Castro Soares; Marriam Bakhtiar; Sandeep Tiwari; Syed Shah Hassan; Fazal Hanan; Rommel Thiago Jucá Ramos; Ulisses de Pádua Pereira; Debmalya Barh; Henrique César Pereira Figueiredo; David W. Ussery; Anderson Miyoshi; Artur Silva; Vasco Azevedo

Helicobacter pylori is a human gastric pathogen implicated as the major cause of peptic ulcer and second leading cause of gastric cancer (~70%) around the world. Conversely, an increased resistance to antibiotics and hindrances in the development of vaccines against H. pylori are observed. Pan-genome analyses of the global representative H. pylori isolates consisting of 39 complete genomes are presented in this paper. Phylogenetic analyses have revealed close relationships among geographically diverse strains of H. pylori. The conservation among these genomes was further analyzed by pan-genome approach; the predicted conserved gene families (1,193) constitute ~77% of the average H. pylori genome and 45% of the global gene repertoire of the species. Reverse vaccinology strategies have been adopted to identify and narrow down the potential core-immunogenic candidates. Total of 28 nonhost homolog proteins were characterized as universal therapeutic targets against H. pylori based on their functional annotation and protein-protein interaction. Finally, pathogenomics and genome plasticity analysis revealed 3 highly conserved and 2 highly variable putative pathogenicity islands in all of the H. pylori genomes been analyzed.


BMC Genomics | 2013

A novel in silico reverse-transcriptomics-based identification and blood-based validation of a panel of sub-type specific biomarkers in lung cancer

Debmalya Barh; Neha Jain; Sandeep Tiwari; John K. Field; Elena Padin-Iruegas; A. Ruibal; Rafael López; Michel Herranz; Antaripa Bhattacharya; Lucky Juneja; Cedric Viero; Artur Silva; Anderson Miyoshi; Anil Kumar; Kenneth Blum; Vasco Azevedo; Preetam Ghosh; Triantafillos Liloglou

Lung cancer accounts for the highest number of cancer-related deaths worldwide. Early diagnosis significantly increases the disease-free survival rate and a large amount of effort has been expended in screening trials and the development of early molecular diagnostics. However, a gold standard diagnostic strategy is not yet available. Here, based on miRNA expression profile in lung cancer and using a novel in silico reverse-transcriptomics approach, followed by analysis of the interactome; we have identified potential transcription factor (TF) markers that would facilitate diagnosis of subtype specific lung cancer. A subset of seven TF markers has been used in a microarray screen and was then validated by blood-based qPCR using stage-II and IV non-small cell lung carcinomas (NSCLC). Our results suggest that overexpression of HMGA1, E2F6, IRF1, and TFDP1 and downregulation or no expression of SUV39H1, RBL1, and HNRPD in blood is suitable for diagnosis of lung adenocarcinoma and squamous cell carcinoma sub-types of NSCLC. Here, E2F6 was, for the first time, found to be upregulated in NSCLC blood samples. The miRNA-TF-miRNA interaction based molecular mechanisms of these seven markers in NSCLC revealed that HMGA1 and TFDP1 play vital roles in lung cancer tumorigenesis. The strategy developed in this work is applicable to any other cancer or disease and can assist in the identification of potential biomarkers.


Genome Announcements | 2014

Genome Sequence of Lactococcus lactis subsp. lactis NCDO 2118, a GABA-Producing Strain

Letícia de Castro Oliveira; Tessália Diniz Luerce Saraiva; Siomar de Castro Soares; Rommel Thiago Jucá Ramos; Pablo H. C. Sá; Adriana Ribeiro Carneiro; Fábio Miranda; Matheus Freire; Wendel Renan; Alberto Fernandes de Oliveira Junior; Anderson Rodrigues dos Santos; Anne Cybelle Pinto; Bianca Mendes Souza; Camila Prósperi De Castro; Carlos Augusto Almeida Diniz; Clarissa Santos Rocha; Diego C. B. Mariano; Edgar L. Aguiar; Edson L. Folador; Eudes Barbosa; Flávia Aburjaile; Lucas Amorim Gonçalves; Luis Carlos Guimarães; Marcela de Azevedo; Pamela Mancha Agresti; Renata F. Silva; Sandeep Tiwari; Sintia Almeida; Syed Shah Hassan; Vanessa Bastos Pereira

ABSTRACT Lactococcus lactis subsp. lactis NCDO 2118 is a nondairy lactic acid bacterium, a xylose fermenter, and a gamma-aminobutyric acid (GABA) producer isolated from frozen peas. Here, we report the complete genome sequence of L. lactis NCDO 2118, a strain with probiotic potential activity.


Standards in Genomic Sciences | 2012

Complete genome sequence of Corynebacterium pseudotuberculosis biovar ovis strain P54B96 isolated from antelope in South Africa obtained by rapid next generation sequencing technology

Syed Shah Hassan; Luis Carlos Guimarães; Ulisses de Pádua Pereira; Arshad Islam; Amjad Ali; Syeda Marriam Bakhtiar; Dayana Ribeiro; Anderson Rodrigues dos Santos; Siomar de Castro Soares; Fernanda Alves Dorella; Anne Cybelle Pinto; Maria Paula Cruz Schneider; Maria Silvanira Barbosa; Sintia Almeida; Vinicius Augusto Carvalho de Abreu; Flávia Aburjaile; Adriana Ribeiro Carneiro; Louise Teixeira Cerdeira; Karina Fiaux; Eudes Guilherme Vieria Barbosa; Carlos R. Diniz; Flávia Souza Rocha; Rommel Thiago Jucá Ramos; Neha Jain; Sandeep Tiwari; Debmalya Barh; Anderson Miyoshi; Borna Müller; Artur Silva; Vasco Azevedo

The Actinobacteria, Corynebacterium pseudotuberculosis strain P54B96, a nonmotile, non-sporulating and a mesophile bacterium, was isolated from liver, lung and mediastinal lymph node lesions in an antelope from South Africa. This strain is interesting in the sense that it has been found together with non-tuberculous mycobacteria (NTMs) which could nevertheless play a role in the lesion formation. In this work, we describe a set of features of C. pseudotuberculosis P54B96, together with the details of the complete genome sequence and annotation. The genome comprises of 2.34 Mbp long, single circular genome with 2,084 protein-coding genes, 12 rRNA, 49 tRNA and 62 pseudogenes and a G+C content of 52.19%. The analysis of the genome sequence provides means to better understanding the molecular and genetic basis of virulence of this bacterium, enabling a detailed investigation of its pathogenesis.


Journal of Bacteriology | 2011

Complete Genome Sequence of Corynebacterium pseudotuberculosis Strain CIP 52.97, Isolated from a Horse in Kenya

Louise Teixeira Cerdeira; Maria Paula Cruz Schneider; Anne Cybelle Pinto; Sintia Almeida; Anderson Rodrigues dos Santos; Eudes Barbosa; Amjad Ali; Flávia Aburjaile; Vinicius Augusto Carvalho de Abreu; Luis Carlos Guimarães; Siomar de Castro Soares; Fernanda Alves Dorella; Flávia Souza Rocha; Erick Bol; Pablo H.C.G. de Sá; Thiago Souza Lopes; Maria Silvanira Barbosa; Adriana Ribeiro Carneiro; Rommel Thiago Jucá Ramos; Nilson Coimbra; Alex Ranieri Jerônimo Lima; Debmalya Barh; Neha Jain; Sandeep Tiwari; Rathiram Raja; Vasudeo Zambare; Preetam Ghosh; Eva Trost; Andreas Tauch; Anderson Miyoshi

In this work, we report the whole-genome sequence of Corynebacterium pseudotuberculosis bv. equi strain CIP 52.97 (Collection Institut Pasteur), isolated in 1952 from a case of ulcerative lymphangitis in a Kenyan horse, which has evidently caused significant losses to agribusiness. Therefore, obtaining this genome will allow the detection of important targets for postgenomic studies, with the aim of minimizing problems caused by this microorganism.

Collaboration


Dive into the Sandeep Tiwari's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Debmalya Barh

Virginia Commonwealth University

View shared research outputs
Top Co-Authors

Avatar

Artur Silva

Federal University of Maranhão

View shared research outputs
Top Co-Authors

Avatar

Preetam Ghosh

Virginia Commonwealth University

View shared research outputs
Top Co-Authors

Avatar

Syed Babar Jamal

Universidade Federal de Minas Gerais

View shared research outputs
Top Co-Authors

Avatar

Syed Shah Hassan

Universidade Federal de Minas Gerais

View shared research outputs
Top Co-Authors

Avatar

Anderson Miyoshi

Universidade Federal de Minas Gerais

View shared research outputs
Top Co-Authors

Avatar

Sintia Almeida

Universidade Federal de Minas Gerais

View shared research outputs
Top Co-Authors

Avatar

Siomar de Castro Soares

Universidade Federal de Minas Gerais

View shared research outputs
Top Co-Authors

Avatar

Debmalya Barh

Virginia Commonwealth University

View shared research outputs
Researchain Logo
Decentralizing Knowledge