Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Sander Bekeschus is active.

Publication


Featured researches published by Sander Bekeschus.


Free Radical Research | 2014

Hydrogen peroxide: A central player in physical plasma-induced oxidative stress in human blood cells.

Sander Bekeschus; J. Kolata; Christine C. Winterbourn; A. Kramer; Rufus Turner; Klaus-Dieter Weltmann; B. Bröker; Kai Masur

Abstract Plasma medicine is an interdisciplinary field and recent clinical studies showed benefits of topical plasma application to chronic wounds. Whereas most investigations have focused on plasma–skin cell interaction, immune cells are omnipresent in most tissues as well. They not only elicit specific immune responses but also regulate inflammation, which is central in healing and regeneration. Plasma generates short-lived radicals and species in the gas phase. Mechanisms of plasma–cell interactions are not fully understood but it is hypothesized that reactive oxygen and nitrogen species (RONS) mediate effects of plasma on cells. In this study human blood cells were investigated after cold atmospheric plasma treatment with regard to oxidation and viability. Plasma generates hydrogen peroxide (H2O2) and the responses were similar in cells treated with concentration-matched H2O2. Both treatments gave an equivalent reduction in viability and this was completely abrogated if catalase was added prior to plasma exposure. Further, five oxidation probes were utilized and fluorescence increase was observed in plasma-treated cells. Dye-dependent addition of catalase diminished most but not all of the probe fluorescence, assigning H2O2 a dominant but not exclusive role in cellular oxidation by plasma. Investigations for other species revealed generation of nitrite and formation of 3-nitrotyrosine but not 3-chlorotyrosine after plasma treatment indicating presence of RNS which may contribute to cellular redox changes observed. Together, these results will help to clarify how oxidative stress associates with physical plasma treatment in wound relevant cells.


Immunobiology | 2013

Impact of non-thermal plasma treatment on MAPK signaling pathways of human immune cell lines.

Lena Bundscherer; Kristian Wende; Katja Ottmüller; Annemarie Barton; Anke Schmidt; Sander Bekeschus; Sybille Hasse; Klaus-Dieter Weltmann; Kai Masur; Ulrike Lindequist

In the field of wound healing research non-thermal plasma (NTP) increasingly draws attention. Next to its intensely studied antibacterial effects, some studies already showed stimulating effects on eukaryotic cells. This promises a unique potential in healing of chronic wounds, where effective therapies are urgently needed. Immune cells do play an important part in the process of wound healing and their reaction to NTP treatment has yet been rarely examined. Here, we studied the impact of NTP treatment using the kinpen on apoptotic and proliferative cell signaling pathways of two human immune cell lines, the CD4(+)T helper cell line Jurkat and the monocyte cell line THP-1. Depending on NTP treatment time the number of apoptotic cells increased in both investigated cell types according to a caspase 3 assay. Western blot analysis pointed out that plasma treatment activated pro-apoptotic signaling proteins like p38 mitogen-activated protein kinase (p38 MAPK) and c-Jun N-terminal kinase 1 and 2 (JNK 1/2) in both cell types. Stronger signals were detected in Jurkat cells at comparable plasma treatment times. Intriguingly, exposure of Jurkat and THP-1 cells to plasma also activated the pro-proliferative signaling molecules extracellular signal-regulated kinase 1/2 (ERK 1/2) and MAPK/ERK kinase 1 and 2 (MEK 1/2). In contrast to Jurkat cells, the anti-apoptotic heat shock protein 27 (HSP27) was activated in THP-1 cells after plasma treatment, indicating a possible mechanism how THP-1 cells may reduce programmed cell death. In conclusion, several signaling cascades were activated in the examined immune cell lines after NTP treatment and in THP-1 monocytes a possible defense mechanism against plasma impacts could be revealed. Therefore, plasma might be a treatment option for wound healing.


Free Radical Research | 2013

Non-thermal plasma treatment is associated with changes in transcriptome of human epithelial skin cells

Anke Schmidt; Kristian Wende; Sander Bekeschus; Lena Bundscherer; Annemarie Barton; Katja Ottmüller; Klaus-Dieter Weltmann; Kai Masur

Abstract Non-thermal atmospheric pressure plasma has recently gained attention in the field of biomedical and clinical applications. In the area of plasma medicine research, one promising approach is to promote wound healing by stimulation of cells involved. To understand basic molecular and cellular mechanisms triggered by plasma treatment, we investigated biological effects of an argon plasma jet kinpen on human epithelial skin cells. For assessment of transcriptome changes cell culture medium was plasma treated and applied to the HaCaT keratinocyte cell culture (indirect treatment). Consequently, whole-genome microarrays were used to analyze this interaction in detail and identified a statistically significant modification of 3,274 genes including 1,828 up- and 1,446 downregulated genes. Particularly, cells after indirect plasma treatment are characterized by differential expression of a considerable number of genes involved in the response to stress. In this regard, we found a plasma-dependent regulation of oxidative stress answer and increased expression of enzymes of the antioxidative defense system (e.g. 91 oxidoreductases). Our results demonstrate that plasma not only induces cell reactions of stress-sensing but also of proliferative nature. Consistent with gene expression changes as well as Ingenuity Pathway Analysis prediction, we propose that stimulating doses of plasma may protect epithelial skin cells in wound healing by promoting proliferation and differentiation. In conclusion, gene expression profiling may become an important tool in identifying plasma-related changes of gene expression. Our results underline the enormous clinical potential of plasma as a biomedical tool for stimulation of epithelial skin cells.


Mutation Research-genetic Toxicology and Environmental Mutagenesis | 2016

Risk assessment of a cold argon plasma jet in respect to its mutagenicity

Kristian Wende; Sander Bekeschus; Anke Schmidt; L. Jatsch; Sybille Hasse; K.-D. Weltmann; Kai Masur; T. von Woedtke

Cold atmospheric pressure plasmas represent a favorable option for the treatment of heat sensitive materials and human or animal tissue. Beneficial effects have been documented in a variety of medical conditions, e.g., in the treatment of chronic wounds. It is assumed that the main mechanism of the plasmas efficacy is mediated by a stimulating dissipation of energy via radiation and/or chemical energy. Although no evidence on undesired side effects of a plasma treatment has yet been presented, skepticism toward the safety of the exposure to plasma is present. However, only little data regarding the mutagenic potential of this new treatment option is available. Accordingly, we investigated the mutagenic potential of an argon plasma jet (kinpen) using different testing systems in accordance with ISO norms and multiple cell lines: a HPRT1 mutation assay, a micronucleus formation assay, and a colony formation assay. Moderate plasma treatment up to 180 s did not increase genotoxicity in any assay or cell type investigated. We conclude that treatment with the argon plasma jet kinpen did not display a mutagenic potential under the test conditions applied and may from this perspective be regarded as safe for the use in biomedical applications.


Experimental Dermatology | 2017

A cold plasma jet accelerates wound healing in a murine model of full‐thickness skin wounds

Anke Schmidt; Sander Bekeschus; Kristian Wende; Brigitte Vollmar; Thomas von Woedtke

Cold plasma has been successfully applied in several fields of medicine that require, for example, pathogen inactivation, implant functionalization or alteration of cellular activity. Previous studies have provided evidence that plasma supports the healing of wounds owing to its beneficial mixtures of reactive species and modulation of inflammation in cells and tissues. To investigate the wound healing activity of an atmospheric pressure plasma jet in vivo, we examined the cold plasmas efficacy on dermal regeneration in a murine model of dermal full‐thickness ear wound. Over 14 days, female mice received daily plasma treatment. Quantitative analysis by transmitted light microscopy demonstrated a significantly accelerated wound re‐epithelialization at days 3–9 in comparison with untreated controls. In vitro, cold plasma altered keratinocyte and fibroblast migration, while both cell types showed significant stimulation resulting in accelerated closure of gaps in scratch assays. This plasma effect correlated with the downregulation of the gap junctional protein connexin 43 which is thought to be important in the regulation of wound healing. In addition, plasma induced profound changes in adherence junctions and cytoskeletal dynamics as shown by downregulation of E‐cadherin and several integrins as well as actin reorganization. Our results theorize cold plasma to be a beneficial treatment option supplementing existing wound therapies.


PLOS ONE | 2016

Investigating the Mutagenicity of a Cold Argon-Plasma Jet in an HET-MN Model.

Susanne Kluge; Sander Bekeschus; Claudia Bender; Hicham Benkhai; Axel Sckell; Harald Below; Matthias B. Stope; Axel Kramer

Objective So-called cold physical plasmas for biomedical applications generate reactive oxygen and nitrogen species and the latter can trigger DNA damage at high concentrations. Therefore, the mutagenic risks of a certified atmospheric pressure argon plasma jet (kINPen MED) and its predecessor model (kINPen 09) were assessed. Methods Inner egg membranes of fertilized chicken eggs received a single treatment with either the kINPen 09 (1.5, 2.0, or 2.5 min) or the kINPen MED (3, 4, 5, or 10 min). After three days of incubation, blood smears (panoptic May-Grünwald-Giemsa stain) were performed, and 1000 erythrocytes per egg were evaluated for the presence of polychromatic and normochromic nuclear staining as well as nuclear aberrations and binucleated cells (hen’s egg test for micronuclei induction, HET-MN). At the same time, the embryo mortality was documented. For each experiment, positive controls (cyclophosphamide and methotrexate) and negative controls (NaCl-solution, argon gas) were included. Additionally, the antioxidant potential of the blood plasma was assessed by ascorbic acid oxidation assay after treatment. Results For both plasma sources, there was no evidence of genotoxicity, although at the longest plasma exposure time of 10 min the mortality of the embryos exceeded 40%. The antioxidant potential in the egg’s blood plasma was not significantly reduced immediately (p = 0.32) or 1 h (p = 0.19) post exposure to cold plasma. Conclusion The longest plasma treatment time with the kINPen MED was 5–10 fold above the recommended limit for treatment of chronic wounds in clinics. We did not find mutagenic effects for any plasma treatment time using the either kINPen 09 or kINPen MED. The data provided with the current study seem to confirm the lack of a genotoxic potential suggesting that a veterinary or clinical application of these argon plasma jets does not pose mutagenic risks.


IEEE Transactions on Plasma Science | 2015

Nitrogen Shielding of an Argon Plasma Jet and Its Effects on Human Immune Cells

Sander Bekeschus; Sylvain Iseni; Stephan Reuter; Kai Masur; Klaus-Dieter Weltmann

Atmospheric pressure plasmas are widely used in research for biomedical or clinical applications. Reactive oxygen species and reactive nitrogen species (RNS) produced by plasmas are thought to be of major significance in plasma-cell interactions. Different applications, however, may demand for different plasma properties. Tailoring plasma devices by modulating the supply gas or the surrounding is a suitable way to alter reactive species composition, vacuum ultra violet emission, or temperature. Treatment regimens involving availability of oxygen or humidity may lead to increased hydrogen peroxide deposition in liquids and thus will be toxic to cells. Using an atmospheric pressure argon plasma jet, we applied a nitrogen gas curtain to its visible effluent during treatment of human immune cells. The curtain deprived the plasma of molecular oxygen. This excluded gas-phase oxygen plasma chemistry and led to generation of highly energetic metastables. Planar laser-induced fluorescence spectroscopy verified laminar gas flow and complete elimination of surrounding air by the gas curtain. We used human immune cells to monitor cytotoxic effects as they are highly relevant in potential clinical plasma applications, e.g., treatment of chronic wounds. Air curtain plasma treatment led to significantly higher cytotoxicity compared with nitrogen curtain plasma treatment. Scavenging of hydrogen peroxide abrogated cell death in both gas curtain conditions. This indicated a negligible contribution of highly energetic metastables or increased gas temperature to cytotoxicity. Finally, the results suggested an oxygen-independent generation of hydrogen peroxide pointing to an indirect role of UV or RNS in plasma-mediated cytotoxicity.


Oxidative Medicine and Cellular Longevity | 2016

Periodic Exposure of Keratinocytes to Cold Physical Plasma: An In Vitro Model for Redox-Related Diseases of the Skin

Anke Schmidt; Thomas von Woedtke; Sander Bekeschus

Oxidative stress illustrates an imbalance between radical formation and removal. Frequent redox stress is critically involved in many human pathologies including cancer, psoriasis, and chronic wounds. However, reactive species pursue a dual role being involved in signaling on the one hand and oxidative damage on the other. Using a HaCaT keratinocyte cell culture model, we investigated redox regulation and inflammation to periodic, low-dose oxidative stress after two, six, eight, ten, and twelve weeks. Chronic redox stress was generated by recurrent incubation with cold physical plasma-treated cell culture medium. Using transcriptome microarray technology, we identified both acute ROS-stress responses as well as numerous adaptions after several weeks of redox challenge. We determined a differential expression (2-fold, FDR < 0.01, p < 0.05) of 260 genes that function in inflammation and redox homeostasis, such as cytokines (e.g., IL-6, IL-8, and IL-10), growth factors (e.g., CSF2, FGF, and IGF-2), and antioxidant enzymes (e.g., HMOX, NQO1, GPX, and PRDX). Apoptotic signaling was affected rather modestly, especially in p53 downstream targets (e.g., BCL2, BBC3, and GADD45). Strikingly, the cell-protective heat shock protein HSP27 was strongly upregulated (p < 0.001). These results suggested cellular adaptions to frequent redox stress and may help to better understand the inflammatory responses in redox-related diseases.


GMS Krankenhaushygiene interdisziplinär | 2012

Pilot-study on the influence of carrier gas and plasma application (open resp. delimited) modifications on physical plasma and its antimicrobial effect against Pseudomonas aeruginosa and Staphylococcus aureus.

Rutger Matthes; Sander Bekeschus; Claudia Bender; Ina Koban; Nils-Olaf Hübner; Axel Kramer

Introduction: Physical plasma is a promising new technology regarding its antimicrobial effects. This is especially accounting for treatment of bacterial infection of chronic wounds. Plasma can be generated with different carrier gases causing various biological effects. Screening of different carrier gases and plasma generation setups is therefore needed to find suitable compositions for highly effective antimicrobial plasma treatments and other applications. Method: The plasma source used was a radio-frequency plasma jet which generates tissue tolerable plasma (TTP). The study compared the antimicrobial efficacy of air, argon, or helium plasma alone or admixed with 0.1%, 0.5%, and 1% oxygen against Pseudomonas aeruginosa (P. aeruginosa) and Staphylococcus aureus (S. aureus). Treatment took place in an environmentally open and delimited system. Therefore, bacteria were plated on agar and treated with plasma in a punctiform manner. The resulting inhibition zones were measured and the reduction factors were calculated by colony counting, respectively. Results: For S. aureus and P. aeruginosa, inhibition zones and overall reduction of colony forming units (CFU) on the agar plate were observed while an accumulative reduction of CFU dominated for S. aureus. The highest antimicrobial effect was shown in form of an inhibition zone for argon plasma with 0.1% oxygen admixture for both species. S. aureus was more sensitive for helium plasma with >0.1% oxygen admixture compared to P. aeruginosa which in turn was more sensitive for argon plasma with and without oxygen. The efficacy of air plasma was very low in comparison to the other gases. The treatment in a closed system predominantly enhanced the antimicrobial effect. The effect intensity varied for each treatment time and gas mixtures. Discussion: As expected, the antimicrobial effect mostly increased when increasing oxygen admixture to the carrier gases. The variation in bacterial growth and inhibition after exposure to different plasma gas compositions could be due to a varying generation of reactive oxygen species or radiation. Conclusion: The applied plasma in a “closed system” accumulates bactericidal plasma species and might increase antimicrobial efficacy in clinical settings as in wound management involving multi-drug resistant bacteria.


Oxidative Medicine and Cellular Longevity | 2016

Redox Stimulation of Human THP-1 Monocytes in Response to Cold Physical Plasma

Sander Bekeschus; Anke Schmidt; Lydia Bethge; Kai Masur; Thomas von Woedtke; Sybille Hasse; Kristian Wende

In plasma medicine, cold physical plasma delivers a delicate mixture of reactive components to cells and tissues. Recent studies suggested a beneficial role of cold plasma in wound healing. Yet, the biological processes related to the redox modulation via plasma are not fully understood. We here used the monocytic cell line THP-1 as a model to test their response to cold plasma in vitro. Intriguingly, short term plasma treatment stimulated cell growth. Longer exposure only modestly compromised cell viability but apparently supported the growth of cells that were enlarged in size and that showed enhanced metabolic activity. A significantly increased mitochondrial content in plasma treated cells supported this notion. On THP-1 cell proteome level, we identified an increase of protein translation with key regulatory proteins being involved in redox regulation (hypoxia inducible factor 2α), differentiation (retinoic acid signaling and interferon inducible factors), and cell growth (Yin Yang 1). Regulation of inflammation is a key element in many chronic diseases, and we found a significantly increased expression of the anti-inflammatory heme oxygenase 1 (HMOX1) and of the neutrophil attractant chemokine interleukin-8 (IL-8). Together, these results foster the view that cold physical plasma modulates the redox balance and inflammatory processes in wound related cells.

Collaboration


Dive into the Sander Bekeschus's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Axel Kramer

University of Greifswald

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge