Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Sander M. Houten is active.

Publication


Featured researches published by Sander M. Houten.


Nature | 2006

Bile acids induce energy expenditure by promoting intracellular thyroid hormone activation

Mitsuhiro Watanabe; Sander M. Houten; Chikage Mataki; Marcelo A. Christoffolete; Brian W. Kim; Hiroyuki Sato; Nadia Messaddeq; John W. Harney; Osamu Ezaki; Tatsuhiko Kodama; Kristina Schoonjans; Antonio C. Bianco; Johan Auwerx

While bile acids (BAs) have long been known to be essential in dietary lipid absorption and cholesterol catabolism, in recent years an important role for BAs as signalling molecules has emerged. BAs activate mitogen-activated protein kinase pathways, are ligands for the G-protein-coupled receptor (GPCR) TGR5 and activate nuclear hormone receptors such as farnesoid X receptor α (FXR-α; NR1H4). FXR-α regulates the enterohepatic recycling and biosynthesis of BAs by controlling the expression of genes such as the short heterodimer partner (SHP; NR0B2) that inhibits the activity of other nuclear receptors. The FXR-α-mediated SHP induction also underlies the downregulation of the hepatic fatty acid and triglyceride biosynthesis and very-low-density lipoprotein production mediated by sterol-regulatory-element-binding protein 1c. This indicates that BAs might be able to function beyond the control of BA homeostasis as general metabolic integrators. Here we show that the administration of BAs to mice increases energy expenditure in brown adipose tissue, preventing obesity and resistance to insulin. This novel metabolic effect of BAs is critically dependent on induction of the cyclic-AMP-dependent thyroid hormone activating enzyme type 2 iodothyronine deiodinase (D2) because it is lost in D2-/- mice. Treatment of brown adipocytes and human skeletal myocytes with BA increases D2 activity and oxygen consumption. These effects are independent of FXR-α, and instead are mediated by increased cAMP production that stems from the binding of BAs with the G-protein-coupled receptor TGR5. In both rodents and humans, the most thermogenically important tissues are specifically targeted by this mechanism because they coexpress D2 and TGR5. The BA–TGR5–cAMP–D2 signalling pathway is therefore a crucial mechanism for fine-tuning energy homeostasis that can be targeted to improve metabolic control.


Journal of Clinical Investigation | 2004

Bile acids lower triglyceride levels via a pathway involving FXR, SHP, and SREBP-1c

Mitsuhiro Watanabe; Sander M. Houten; Li Wang; Antonio Moschetta; David J. Mangelsdorf; Richard A. Heyman; David D. Moore; Johan Auwerx

We explored the effects of bile acids on triglyceride (TG) homeostasis using a combination of molecular, cellular, and animal models. Cholic acid (CA) prevents hepatic TG accumulation, VLDL secretion, and elevated serum TG in mouse models of hypertriglyceridemia. At the molecular level, CA decreases hepatic expression of SREBP-1c and its lipogenic target genes. Through the use of mouse mutants for the short heterodimer partner (SHP) and liver X receptor (LXR) alpha and beta, we demonstrate the critical dependence of the reduction of SREBP-1c expression by either natural or synthetic farnesoid X receptor (FXR) agonists on both SHP and LXR alpha and LXR beta. These results suggest that strategies aimed at increasing FXR activity and the repressive effects of SHP should be explored to correct hypertriglyceridemia.


Cell Metabolism | 2008

Specific SIRT1 activation mimics low energy levels and protects against diet-induced metabolic disorders by enhancing fat oxidation.

Jerome N. Feige; Marie Lagouge; Carles Cantó; Axelle Strehle; Sander M. Houten; Jill Milne; Philip D. Lambert; Chikage Mataki; Peter J. Elliott; Johan Auwerx

The NAD(+)-dependent deacetylase SIRT1 controls metabolic processes in response to low nutrient availability. We report the metabolic phenotype of mice treated with SRT1720, a specific and potent synthetic activator of SIRT1 that is devoid of direct action on AMPK. SRT1720 administration robustly enhances endurance running performance and strongly protects from diet-induced obesity and insulin resistance by enhancing oxidative metabolism in skeletal muscle, liver, and brown adipose tissue. These metabolic effects of SRT1720 are mediated by the induction of a genetic network controlling fatty acid oxidation through a multifaceted mechanism that involves the direct deacetylation of PGC-1alpha, FOXO1, and p53 and the indirect stimulation of AMPK signaling through a global metabolic adaptation mimicking low energy levels. Combined with our previous work on resveratrol, the current study further validates SIRT1 as a target for the treatment of metabolic disorders and characterizes the mechanisms underlying the therapeutic potential of SIRT1 activation.


Nature Genetics | 1999

Mutations in MVK, encoding mevalonate kinase, cause hyperimmunoglobulinaemia D and periodic fever syndrome

Sander M. Houten; W. Kuis; M. Duran; T J de Koning; A. Van Royen-Kerkhof; Gerrit Jan Romeijn; Joost Frenkel; L. Dorland; M. de Barse; W. A. R. Huijbers; Ger T. Rijkers; Hans R. Waterham; R. J. A. Wanders; B. T. Poll-The

Hyperimmunoglobulinaemia D and periodic fever syndrome (HIDS; MIM 260920) is an autosomal recessive disorder characterized by recurrent episodes of fever associated with lymphadenopathy, arthralgia, gastrointestinal dismay and skin rash. Diagnostic hallmark of HIDS is a constitutively elevated level of serum immunoglobulin D (IgD), although patients have been reported with normal IgD levels. To determine the underlying defect in HIDS, we analysed urine of several patients and discovered increased concentrations of mevalonic acid during severe episodes of fever, but not between crises. Subsequent analysis of cells from four unrelated HIDS patients revealed reduced activities of mevalonate kinase (MK; encoded by the gene MVK), a key enzyme of isoprenoid biosynthesis. Sequence analysis of MVK cDNA from the patients identified three different mutations, one of which was common to all patients. Expression of the mutant cDNAs in Escherichia coli showed that all three mutations affect the activity of the encoded proteins. Moreover, immunoblot analysis demonstrated a deficiency of MK protein in patient fibroblasts, indicating a protein-destabilizing effect of the mutations.


Obesity | 2009

Serum Bile Acids Are Higher in Humans With Prior Gastric Bypass: Potential Contribution to Improved Glucose and Lipid Metabolism

Mary-Elizabeth Patti; Sander M. Houten; Antonio C. Bianco; Raquel Bernier; P. Reed Larsen; Jens J. Holst; Michael K. Badman; Eleftheria Maratos-Flier; Edward C. Mun; Jussi Pihlajamäki; Johan Auwerx; Allison B. Goldfine

The multifactorial mechanisms promoting weight loss and improved metabolism following Roux‐en‐Y gastric bypass (GB) surgery remain incompletely understood. Recent rodent studies suggest that bile acids can mediate energy homeostasis by activating the G‐protein coupled receptor TGR5 and the type 2 thyroid hormone deiodinase. Altered gastrointestinal anatomy following GB could affect enterohepatic recirculation of bile acids. We assessed whether circulating bile acid concentrations differ in patients who previously underwent GB, which might then contribute to improved metabolic homeostasis. We performed cross‐sectional analysis of fasting serum bile acid composition and both fasting and post‐meal metabolic variables, in three subject groups: (i) post‐GB surgery (n = 9), (ii) without GB matched to preoperative BMI of the index cohort (n = 5), and (iii) without GB matched to current BMI of the index cohort (n = 10). Total serum bile acid concentrations were higher in GB (8.90 ± 4.84 µmol/l) than in both overweight (3.59 ± 1.95, P = 0.005, Ov) and severely obese (3.86 ± 1.51, P = 0.045, MOb). Bile acid subfractions taurochenodeoxycholic, taurodeoxycholic, glycocholic, glycochenodeoxycholic, and glycodeoxycholic acids were all significantly higher in GB compared to Ov (P < 0.05). Total bile acids were inversely correlated with 2‐h post‐meal glucose (r = −0.59, P < 0.003) and fasting triglycerides (r = −0.40, P = 0.05), and positively correlated with adiponectin (r = −0.48, P < 0.02) and peak glucagon‐like peptide‐1 (GLP‐1) (r = 0.58, P < 0.003). Total bile acids strongly correlated inversely with thyrotropic hormone (TSH) (r = −0.57, P = 0.004). Together, our data suggest that altered bile acid levels and composition may contribute to improved glucose and lipid metabolism in patients who have had GB.


Journal of Inherited Metabolic Disease | 2010

A general introduction to the biochemistry of mitochondrial fatty acid β-oxidation.

Sander M. Houten

Over the years, the mitochondrial fatty acid β-oxidation (FAO) pathway has been characterised at the biochemical level as well as the molecular biological level. FAO plays a pivotal role in energy homoeostasis, but it competes with glucose as the primary oxidative substrate. The mechanisms behind this so-called glucose–fatty acid cycle operate at the hormonal, transcriptional and biochemical levels. Inherited defects for most of the FAO enzymes have been identified and characterised and are currently included in neonatal screening programmes. Symptoms range from hypoketotic hypoglycaemia to skeletal and cardiac myopathies. The pathophysiology of these diseases is still not completely understood, hampering optimal treatment. Studies of patients and mouse models will contribute to our understanding of the pathogenesis and will ultimately lead to better treatment.


Scientific Reports | 2011

The metabolic footprint of aging in mice

Riekelt H. Houtkooper; Carmen A. Argmann; Sander M. Houten; Carles Cantó; Ellen H. Jeninga; Penelope Andreux; Charles Thomas; Raphaël Doenlen; Kristina Schoonjans; Johan Auwerx

Aging is characterized by a general decline in cellular function, which ultimately will affect whole body homeostasis. Although DNA damage and oxidative stress all contribute to aging, metabolic dysfunction is a common hallmark of aging at least in invertebrates. Since a comprehensive overview of metabolic changes in otherwise healthy aging mammals is lacking, we here compared metabolic parameters of young and 2 year old mice. We systemically integrated in vivo phenotyping with gene expression, biochemical analysis, and metabolomics, thereby identifying a distinguishing metabolic footprint of aging. Among the affected pathways in both liver and muscle we found glucose and fatty acid metabolism, and redox homeostasis. These alterations translated in decreased long chain acylcarnitines and increased free fatty acid levels and a marked reduction in various amino acids in the plasma of aged mice. As such, these metabolites serve as biomarkers for aging and healthspan.


Diabetes | 2013

Acylcarnitines: Reflecting or Inflicting Insulin Resistance?

Marieke G. Schooneman; Frédéric M. Vaz; Sander M. Houten; Maarten R. Soeters

The incidence of obesity and insulin resistance is growing, and the increase in type 2 diabetes mellitus (DM2) constitutes one of the biggest challenges for our healthcare systems. Many theories are proposed for the induction of insulin resistance in glucose and lipid metabolism and its metabolic sequelae. One of these mechanisms is lipotoxicity (1–4): excess lipid supply and subsequent lipid accumulation in insulin-sensitive tissues such as skeletal muscle interfere with insulin-responsive metabolic pathways. Various lipid intermediates, like ceramides, gangliosides, diacylglycerol, and other metabolites, have been held responsible for insulin resistance (2,3,5–10). These intermediates can exert such effects because they are signaling molecules and building blocks of cellular membranes, which harbor the insulin receptor. In addition, lipids play an important role in energy homeostasis. Fatty acids (FA) can be metabolized via mitochondrial FA oxidation (FAO), which yields energy (11). As such, FAO competes with glucose oxidation in a process known as the glucose-FA, or Randle, cycle (12). Muoio and colleagues (1,13,14) proposed an alternative mechanism in which FAO rate outpaces the tricarboxylic acid cycle (TCA), thereby leading to the accumulation of intermediary metabolites such as acylcarnitines that may interfere with insulin sensitivity. This accumulation of acylcarnitines corroborates with some human studies showing that acylcarnitines are associated with insulin resistance (15–17). In addition, acylcarnitines have a long history in the diagnosis and neonatal screening of FAO defects and other inborn errors of metabolism (18). This knowledge may aid to understand the interaction between FAO and insulin resistance and fuel future research. In this review, we discuss the role of acylcarnitines in FAO and insulin resistance as emerging from animal and human studies. ### Carnitine biosynthesis and regulation of tissue carnitine content. To guarantee continuous energy supply, the human body oxidizes considerable amounts of fat besides glucose. …


Cell Metabolism | 2011

PARP-2 Regulates SIRT1 Expression and Whole-Body Energy Expenditure

Péter Bai; Carles Cantó; Attila Brunyanszki; Aline Huber; Magdolna Szántó; Yana Cen; Hiroyasu Yamamoto; Sander M. Houten; Borbála Kiss; Hugues Oudart; Pál Gergely; Josiane Ménissier-de Murcia; Valérie Schreiber; Anthony A. Sauve; Johan Auwerx

SIRT1 is a NAD(+)-dependent enzyme that affects metabolism by deacetylating key transcriptional regulators of energy expenditure. Here, we tested whether deletion of PARP-2, an alternative NAD(+)-consuming enzyme, impacts on NAD(+) bioavailability and SIRT1 activity. Our results indicate that PARP-2 deficiency increases SIRT1 activity in cultured myotubes. However, this increase was not due to changes in NAD(+) levels, but to an increase in SIRT1 expression, as PARP-2 acts as a direct negative regulator of the SIRT1 promoter. PARP-2 deletion in mice increases SIRT1 levels, promotes energy expenditure, and increases mitochondrial content. Furthermore, PARP-2(-/-) mice were protected against diet-induced obesity. Despite being insulin sensitized, PARP-2(-/-) mice were glucose intolerant due to a defective pancreatic function. Hence, while inhibition of PARP activity promotes oxidative metabolism through SIRT1 activation, the use of PARP inhibitors for metabolic purposes will require further understanding of the specific functions of different PARP family members.


Journal of Biological Chemistry | 2011

Lowering Bile Acid Pool Size with a Synthetic Farnesoid X Receptor (FXR) Agonist Induces Obesity and Diabetes through Reduced Energy Expenditure

Mitsuhiro Watanabe; Yasushi Horai; Sander M. Houten; Kohkichi Morimoto; Taichi Sugizaki; Eri Arita; Chikage Mataki; Hiroyuki Sato; Yusuke Tanigawara; Kristina Schoonjans; Hiroshi Itoh; Johan Auwerx

We evaluated the metabolic impact of farnesoid X receptor (FXR) activation by administering a synthetic FXR agonist (GW4064) to mice in which obesity was induced by a high fat diet. Administration of GW4064 accentuated body weight gain and glucose intolerance induced by the high fat diet and led to a pronounced worsening of the changes in liver and adipose tissue. Mechanistically, treatment with GW4064 decreased bile acid (BA) biosynthesis, BA pool size, and energy expenditure, whereas reconstitution of the BA pool in these GW4064-treated animals by BA administration dose-dependently reverted the metabolic abnormalities. Our data therefore suggest that activation of FXR with synthetic agonists is not useful for long term management of the metabolic syndrome, as it reduces the BA pool size and subsequently decreases energy expenditure, translating as weight gain and insulin resistance. In contrast, expansion of the BA pool size, which can be achieved by BA administration, could be an interesting strategy to manage the metabolic syndrome.

Collaboration


Dive into the Sander M. Houten's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Johan Auwerx

École Polytechnique Fédérale de Lausanne

View shared research outputs
Top Co-Authors

Avatar

Carmen A. Argmann

Icahn School of Medicine at Mount Sinai

View shared research outputs
Top Co-Authors

Avatar

Jeanine J. Prompers

Eindhoven University of Technology

View shared research outputs
Top Co-Authors

Avatar

Klaas Nicolay

Eindhoven University of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

M. Duran

University of Amsterdam

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Joost Frenkel

Boston Children's Hospital

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge